首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设0<x<+∞,证明存在η,0<η<1,使 ; (Ⅱ)求η关于x的函数关系的具体表达式η=η(x),并求出当0<x<+∞时函数η(x)的值域. 可逆线性变换X=Cz(其中z=(z1,z2,z3)T),C是三阶可逆矩阵),它将f(x1
(Ⅰ)设0<x<+∞,证明存在η,0<η<1,使 ; (Ⅱ)求η关于x的函数关系的具体表达式η=η(x),并求出当0<x<+∞时函数η(x)的值域. 可逆线性变换X=Cz(其中z=(z1,z2,z3)T),C是三阶可逆矩阵),它将f(x1
admin
2016-04-29
84
问题
(Ⅰ)设0<x<+∞,证明存在η,0<η<1,使
;
(Ⅱ)求η关于x的函数关系的具体表达式η=η(x),并求出当0<x<+∞时函数η(x)的值域.
可逆线性变换X=Cz(其中z=(z
1
,z
2
,z
3
)
T
),C是三阶可逆矩阵),它将f(x
1
,x
2
,x
3
)化为规范形.
选项
答案
f(x
1
,x
2
,x
3
)在正交变换X=Qy的标准形为2y
1
2
-y
2
2
-y
3
2
[*] 则2y
1
2
-y
2
2
-y
3
2
=z
1
2
-z
2
2
-z
3
2
(规范) [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/y9T4777K
0
考研数学三
相关试题推荐
2010年,美国联邦最高法院作出裁决,给大企业政治捐款大开方便之门,随之而来的是亿万富翁的选举“购买力”不断创下新高,一些企业主更是在公开场合与政客露骨地讨价还价。有关统计显示,21世纪以来,美国国会众议院选举中,超过86%的花费最多者最终都能胜选。而另一
中国革命由旧民主主义向新民主主义转变的社会历史条件,主要表现在()。
2020年这场新冠肺炎疫情,是新中国成立以来发生的传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件。中国人民在抗击疫情中展现的非凡精神,成为打赢疫情防控的人民战争、总体战、阻击战的力量之本、信心之源。这说明了()。
这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快.感染范围最广、防控难度最大的一次重大突发公共卫生事件。对我们来说,这是一次危机,也是一次大考。实践证明,党中央对疫情形势的判断是准确的,各项工作部署是及时的,采取的举措是有力有效的。防控工作取得的
“人的思维是否具有真理性,这并不是一个理论的问题,而是一个实践的问题。人应该在实践中证明自己思维的真理性,即自己思维的现实性和力量,亦即自己思维的此岸性。”这一论断说明了()。
建设现代化经济体系是党中央从党和国家事业全局出发,着眼于实现“两个一百年”奋斗目标、顺应中国特色社会主义进入新时代的新要求作出的重大决策部署,既是一个重大理论命题,又是一个重大实践课题。因为形成现代化经济体系()。
验证函数u=e-kn2tsinnx满足热传导方程ut=kuxx.
自由落体位移与时间的关系设有一质量为m的物体,在空中由静止开始下落,如果空气的阻力为R=c2v2(其中c为常数,v为物体运动的速率),试求物体下落的距离s与时间t的函数关系.
设f(x)在区间[-a,a](a>0)上有二阶连续导数,f(0)=0证明在[-a,a]上至少存在一点η,使a3f"(η)=[*]
假设由自动生产线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品,销售每件合格品获利,销售每件不合格品亏损.已知销售利润T(单位:元)与销售零件的内径X有如下关系:问平均内径μ取何值时,销售一个
随机试题
单侧肺局限性哮鸣音可见于
A.心衰B.心肌炎C.洋地黄中毒D.冠心病室性心动过速最常见的病因是
COPD主要的发病因素是
关于穹顶与帆拱,说法正确的是()。
监理工程师对设备安装质量记录资料的控制是检查( )。
由于股利比资本利得具有相对的确定性,因此公司应维持较高的股利支付率,这种观点属于()。
简述上好课的具体要求。
态度与品德的形成取决于个体头脑中对已有的道德准则和规范的理解水平和________,取决于已有的道德评判水平。
根据我国现行《宪法》和《立法法》的规定,下列行为构成违法的是()。
______recentadjustmentsinincometaxrates,workerswillfindthemselvespleasantlysurprisedbyanincreaseinthesizeofth
最新回复
(
0
)