首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak—1α≠0.证明:向量组α,Aα,…,A—1α是线性无关的.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak—1α≠0.证明:向量组α,Aα,…,A—1α是线性无关的.
admin
2017-11-13
68
问题
设A是n阶矩阵,若存在正整数k,使线性方程组A
k
x=0有解向量α,且A
k—1
α≠0.证明:向量组α,Aα,…,A
—1
α是线性无关的.
选项
答案
设有常数λ
1
,λ
2
,…,λ
k
,使得 λ
1
α+λ
2
α+…+λ
k
Aα=0 两端左乘A
k—1
,得 λ
1
A
k—1
α+λ
2
2A
k
α+…+λ
k
A
2k—2
α=0 由于A
k
α=0,有A
k+l
α=0(l为任意正整数),从而有 λ
1
Aα=0 因为A
k—1
α≠0,所以λ
1
=0.类似可证得λ
2
=λ
3
=…=λ
k
=0,因此向量组α,Aα,…,Aα线性无关.
解析
本题考查如何根据已知条件,利用定义证明向量组线性无关.注意,若λ为数,向量α≠0,则λα=0
λ=0.因此,要从多个向量的线性组合等于零向量来推证该线性组合的系数都为0,就需要把它变形成λα=0的形式,当α≠0时就有λ=0.
转载请注明原文地址:https://kaotiyun.com/show/yNr4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上满足|f"(x)|≤2,且f(x)在(a,b)内取到最小值.证明:|f’(a)|+|f’(b)|≤2(b一a).
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数,证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
设f(x)在[a,b]上连续,在(a,b)内可导(a>0).证明:存在ξ,η∈(a,b),使得
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f’(ξ)+f(ξ)g’(ξ)=0.
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
求函数f(x)=In(1一x一2x2)的幂级数,并求出该幂级数的收敛域.
随机试题
石灰沉淀法是除鞣质的方法之一,一般使用
下列情形中,不需要免除其检察官职务的是哪一项?()
某公路隧道无吊顶及预埋件,在土建结构技术状况评定时,路面分项所占的权重为()。已知规范规定的吊顶及预埋件、路面分项的权重分别为10和15.
监理工程师进行质量监理的依据,根据监理的范围及性质可以分为以下两类:共同性的依据和( )依据。
竖向结构(墙、柱等)浇筑混凝土时,混凝土的自由下落高度不应超过( )m。
对外贸易经营者只能在国家允许的范围内为本企业从事对外贸易经营活动,不可以接受他人的委托,在经营范围内代为办理对外贸易业务。
下列各项中,不影响资产预计未来现金流量现值的是()。
关于人体的一些常识,下列说法中错误的是()。
2014年12月份,我国房地产业土地购置面积4062万平方米,同比增长6.5%,土地成交价款:1000亿元,同比增长8.9%。截至2013年末,我国住宅房屋施工面积约为多少亿平方米?
下列程序不属于支持软件的是()。
最新回复
(
0
)