首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak—1α≠0.证明:向量组α,Aα,…,A—1α是线性无关的.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak—1α≠0.证明:向量组α,Aα,…,A—1α是线性无关的.
admin
2017-11-13
26
问题
设A是n阶矩阵,若存在正整数k,使线性方程组A
k
x=0有解向量α,且A
k—1
α≠0.证明:向量组α,Aα,…,A
—1
α是线性无关的.
选项
答案
设有常数λ
1
,λ
2
,…,λ
k
,使得 λ
1
α+λ
2
α+…+λ
k
Aα=0 两端左乘A
k—1
,得 λ
1
A
k—1
α+λ
2
2A
k
α+…+λ
k
A
2k—2
α=0 由于A
k
α=0,有A
k+l
α=0(l为任意正整数),从而有 λ
1
Aα=0 因为A
k—1
α≠0,所以λ
1
=0.类似可证得λ
2
=λ
3
=…=λ
k
=0,因此向量组α,Aα,…,Aα线性无关.
解析
本题考查如何根据已知条件,利用定义证明向量组线性无关.注意,若λ为数,向量α≠0,则λα=0
λ=0.因此,要从多个向量的线性组合等于零向量来推证该线性组合的系数都为0,就需要把它变形成λα=0的形式,当α≠0时就有λ=0.
转载请注明原文地址:https://kaotiyun.com/show/yNr4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上满足|f"(x)|≤2,且f(x)在(a,b)内取到最小值.证明:|f’(a)|+|f’(b)|≤2(b一a).
设f(x)在[a,b]上连续,在(a,b)内可导(a>0).证明:存在ξ,η∈(a,b),使得
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f’(ξ)+f(ξ)g’(ξ)=0.
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)一f(y)|≤M|x—y|k(1)证明:当k>0时,f(x)在[a,b]上连续;(2)证明:当k>1时,f(x)≡常数.
判别级数的敛散性,若收敛求其和.
设函数f0(x)在(一∞,+∞)内连续,证明:绝对收敛.
求函数f(x)=In(1一x一2x2)的幂级数,并求出该幂级数的收敛域.
设y=y(x)满足y’=x+y,且满足y(0)=1,讨论级数的敛散性.
随机试题
E-R图向关系模式转换时,实体标识符转换为关系的________。
数量较少的成形面工件,可以用成形刀车削。()
FootballisthemostpopularsportinthefallintheUnitedStates.Thegameoriginatedasa(an)【21】sportmorethanseventy-fiv
流行病学实验研究中盲法是指
局部麻醉
在出庭公诉的前l天,某甲检察官的儿子突发重病,但是某甲并未要求另外派人出庭公诉,而是在开庭当天圆满地完成了其公诉任务。请问某甲的行为体现了检察官职业道德的哪一方面的基本要求?()
某工程施工过程中发现图纸设计错误,因修改设计而发生新的工程量清单项目,其作为结算依据的综合单价应( )。
某人投资债券,买入价格为500元,卖出价格为600元,其间获得利息收入50元,则该投资者持有期收益率为()。
工资率上升的()会促使劳动者减少劳动力供给时间,多享受闲暇。
关于劳动争议仲裁,下列说法正确的有()。
最新回复
(
0
)