首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设由流水线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品。销售每件合格品获利,销售每件不合格品亏损。已知销售利润T(单位:元)与销售零件的内径X有如下关系: 问平均内径μ取何值时,销售一个零
设由流水线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品。销售每件合格品获利,销售每件不合格品亏损。已知销售利润T(单位:元)与销售零件的内径X有如下关系: 问平均内径μ取何值时,销售一个零
admin
2017-01-14
57
问题
设由流水线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品。销售每件合格品获利,销售每件不合格品亏损。已知销售利润T(单位:元)与销售零件的内径X有如下关系:
问平均内径μ取何值时,销售一个零件的平均利润最大?
选项
答案
依据数学期望的计算公式及一般正态分布的标准化方法,有 E(T)=-1×P{X<10}+20×P{10≤X≤12}-5×P{X>12} =-Ф(10-μ)+20[Ф(12-μ)-Ф(10-μ)]-5[1-Ф(12-μ)] =25Ф(12-μ)-21Ф(10-μ)-5, 可知销售利润的数学期望E(T)是μ的函数。要求E(T)的最大值,令其一阶导数为0,有 [*] 因实际问题一定可取到最值,所以当[*]时,销售一个零件的平均利润最大。
解析
转载请注明原文地址:https://kaotiyun.com/show/yWu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 A
利用数学期望的性质,证明方差的性质:(1)Da=0;(2)D(X+a)+DX;(3)D(aX)=a2DX.
设Q={(x,y,z)丨x2+y2+z2≤1},求.
商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.任取一箱,从中任取一个产品,求其为废品的概率
设幂级数anxn在(-∞,+∞)内收敛,其和函数y(x)满足y"-2xy’-4y=0,y(0)=0,y’(0)=1.证明an+2=2/(n+1)an,n=1,2,…;
设随机变量X服从参数为(2,p)的二项分布,随机变量y服从参数为(3,p)的二项分布,若P丨x≥1丨=5/9,则P丨Y≥1丨=_________.
设半径为R的球面∑的球心在定球面x2+y2+z=a2(a>0)上,问当R为何值时,球面∑在定球面内部的那部分的面积最大.
设α1,α2,α3是四元非齐次方程组AX=b的三个解向量。且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
已知f〞(x)<0,f(0)=0,试证:对任意的两正数x1和x2,恒有f(x1+x2)<f(x1)+f(x2)成立.
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=___________.
随机试题
队列研究中,队列的成员必须
2015年,中国某画家在A国出版作品集,共取得稿酬收入折合人民币90000元,已经按该国的税法规定缴纳了个人所得税6000元。该画家从取得的稿酬中拿出20000元通过民政部门捐赠给我国某贫困地区,则该画家应就此项收入在我国补缴个人所得税()元。
根据竞争与垄断关系的不同,市场通常可分为()几种类型。
在社会服务机构的筹资方式中,相对而言成本较低的筹资方式是( )。
如果两个数的平方和是100,之和是14,那么这两个数的积是多少?
【背景材料(大意)】受特殊计划生育政策、快速城市化和工业化进程中生育意愿迅速变化等多方面因素影响,我国正在进入快速的老龄化过程。截至2013年底,我国60周岁及以上人口20243万人,占总人口的14.9%,65周岁及以上人口13161万人,占总人口的
下列不属于中国特有的动物的是()。
我国公民民事行为能力从()开始享有。
根据不同的角度,可以将法学划分为不同的分支学科,比如从各种类别的法律这一角度,可以将法学划分为()。
关于政治与法的关系的表述,不正确的是()。
最新回复
(
0
)