首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设由流水线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品。销售每件合格品获利,销售每件不合格品亏损。已知销售利润T(单位:元)与销售零件的内径X有如下关系: 问平均内径μ取何值时,销售一个零
设由流水线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品。销售每件合格品获利,销售每件不合格品亏损。已知销售利润T(单位:元)与销售零件的内径X有如下关系: 问平均内径μ取何值时,销售一个零
admin
2017-01-14
65
问题
设由流水线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品。销售每件合格品获利,销售每件不合格品亏损。已知销售利润T(单位:元)与销售零件的内径X有如下关系:
问平均内径μ取何值时,销售一个零件的平均利润最大?
选项
答案
依据数学期望的计算公式及一般正态分布的标准化方法,有 E(T)=-1×P{X<10}+20×P{10≤X≤12}-5×P{X>12} =-Ф(10-μ)+20[Ф(12-μ)-Ф(10-μ)]-5[1-Ф(12-μ)] =25Ф(12-μ)-21Ф(10-μ)-5, 可知销售利润的数学期望E(T)是μ的函数。要求E(T)的最大值,令其一阶导数为0,有 [*] 因实际问题一定可取到最值,所以当[*]时,销售一个零件的平均利润最大。
解析
转载请注明原文地址:https://kaotiyun.com/show/yWu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
从5个数:1,2,3,4,5中任取3个数,再按从小到大排列,设X表示中间那个数,求X的概率分布.
已知某产品的边际成本和边际收益函数分别为Cˊ(q)=q2-4q+6,Rˊ(q)=105—2q,固定成本为100,其中q为销售量,C(q)为总成本,R(q)为总收益,求最大利润.
求下列不定积分:
设f(x,y)与f(x,y)均为可微函数,且φ’(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是
设向量组α1,α2,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
若α1,α2,α3,β1,β2都是4维列向量,且4阶行列式丨α1,α2,α3,β1丨=m,丨α1,α2,β2,α3丨=n,则4阶行列式丨α3,α2,α1,β1+β2丨=__________.
设周期函数f(x,y)在(-∞,+∞)内可导,周期为4,又则曲线y=f(x)在点(5f(5))处的切线的斜率为().
(Ⅰ)因为[*]所以[*]单调减少,而a≥0,即[*]是单调减少有下界的数列,根据极限存在准则,[*](Ⅱ)由(Ⅰ)得0≤[*]对级数[*]因为[*]存在,所以级数[*]根据比较审敛法,级数
设f(x,y)在点(0,0)处连续,且,其中a,b,c为常数.(Ⅰ)求f(0,0)的值.(Ⅱ)证明f(x,y)在点(0,0)处可微,并求出df(x,y)|(0,0).(Ⅲ)讨论f(x,Y)在点(0,0)处是否取极值,说明理由.
随机试题
Thenewbuyeridentifiedadozennewsourcesforthematerial,________provedtobereliable.
举例说明领导方式连续统一体理论的主要观点。
患者李某外伤后考虑胸椎压缩性骨折,合理的摄影体位是
设随机变量X和Y都服从N(0,1)分布,则下列叙述中正确的是()。
内地企业在香港创业板发行与上市的新申请人必须证明在其呈交上市申请的日期之前,在大致相同的拥有权及管理层管理下,具备至少24个月的活跃业务记录。若新申请人符合下列( )条件之一,此规定可减至12个月。
据有关资料统计,连锁超市的规模效益在店铺数量上超过()家后方可显现。
从陶渊明到梭罗,许多人都表达过“田园将芜胡不归”的想法,例如德国作家黑塞便选择享受自己的园圃之乐,“他进人深山求道,茹食花瓣为生,借以摆脱世俗的一切羁绊”。孚克.米谢尔斯将黑塞的诗歌、画作编辑为《园圃之乐》一书,“花朵年年如期盛开于草原,历数千年而不曾爽约
关系数据库的任何检索操作都是由3种基本运算组合而成的,这3种基本运算不包括______。
【S1】【S2】
A.contraryB.exclaimedC.extensivelyD.affectedE.priorF.demandsG.soH.impactI.reasonsJ.relatetoK.specifically
最新回复
(
0
)