首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f′(c)|≤2a+。
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f′(c)|≤2a+。
admin
2018-12-29
71
问题
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f′(c)|≤2a+
。
选项
答案
对f(x)在x=c处应用泰勒公式,展开可得 f(x)=f(c)+f′(c)(x—c)+[*](x—c)
2
, (1) 其中ξ=c+θ(x—c),0<θ<1。 在(1)式中令x=0,则有 f(0)=f(c)+f′(c)(0—c)+[*](0—c)
2
,0<ξ
1
<c<1, 在(1)式中令x=1,则有 f(1)=f(c)+f′(c)(1—c)+[*](1—c)
2
,0<c<ξ
2
<1, 将上述的两个式子相减得到 f(1)—f(0)=f′(c)+[*][f″(ξ
2
)(1—c)
2
—f″(ξ
1
)c
2
], 因此 |f′(c)|=|f(1)—f(0)—[*][f″(ξ
2
)(1—c)
2
—f″(ξ
1
)c
2
} ≤|f(1)|+|f(0)|+[*]|f″(ξ
2
)|(1—c)
2
+[*]|f″(ξ
1
)|c
2
≤2a+[*](1—c)
2
+c
2
。 又因当c∈(0,1)时,有(1—c)
2
+c
2
≤1,所以|f′(c)|≤2a+[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/0PM4777K
0
考研数学一
相关试题推荐
已知向量a与单位向量e不共线,另有一个与它们共面的向量p,当向量a、e、p起点相同时,向量p关于向量e与向量a对称,试用向量a和向量e来表示向量P.
设f(x)在x=0处二阶可导,且求f(0),f’(0),f’’(0).
求二重积分其中积分区域D是由曲线y=—a+和直线y=—x所围成的平面区域.
当u>0时f(u)有一阶连续导数,且f(1)=0,又二元函数z=f(ex—ey),)满足则f(u)=().
计算二重积分其中积分区域为D={(x,y)||x|≤1,0≤y≤2}.
求证:若向量a、b、c不共面,则向量a×b,b×c,c×a也不共面.
将函数f(x)=2+|x|(一1≤x≤1)展开成以2为周期的傅里叶级数,并求数项级数的“和数”.
设总体x的密度函数为其中θ>0,θ,μ为未知参数,X1,X2,…,Xn为取自X的样本.求μ,σ的最大似然估计.
设随机变量X1,X2,X3相互独立且都服从参数为P的0-1分布,已知矩阵为正定矩阵的概率为.试求:随机变量的分布律.
写了n封信,但信封上的地址是以随机的次序写的,设Y表示地址恰好写对的信的数目,求EY及DY.
随机试题
存货的基础工作设计不包括
A、呋塞米B、氢氯噻嗪C、螺内酯D、氨苯蝶啶E、乙酰唑胺急性肾衰竭少尿时用
男,58岁,近四年上腹部胀闷感,消化不良,食欲减退、体重减轻。近日经胃钡餐透视、胃镜以及胃CT等检查确认为胃癌。患者童年丧母,性格克制,好压抑情绪,经常焦虑、抑郁。有吸烟史。患者心理应激导致的重要生理变化是
根据《国家基本药物目录管理办法(暂行)》,国家基本药物目录中生物制品分类的主要依据是
北方有限责任公司(非投资公司)由甲企业、乙企业、丙企业共同投资,于2015年4月1日成立,注册资本为1000万元,其中,甲企业认缴的出资额为600万元,乙企业认缴的出资额为300万元,丙企业认缴的出资额为100万元。根据公司章程的规定,甲、乙、丙分期缴付
1995-2003年应纳所得税总额()万元。追加投资形成的所得应纳税额()万元。
如图,是一定质量的气体在不同温度下的两条等温线,T1表示等温线工的温度,T2表示等温线Ⅱ的温度。由此可以判定()。
极限的值是()。
针对当前一些领导干部抓落实能力弱的问题,有人说,抓落实就是要“踏石留印,抓铁有痕”。这是强调()。
刑侦队长报告说:“所有的娱乐场所都搜查过了,没有发现犯罪嫌疑人的踪迹。”如果上述报告属实,则在下面四个断定中:Ⅰ.没有娱乐场所被搜查过。Ⅱ.有的娱乐场所被搜查过。Ⅲ.有的娱乐场所没有被搜查过。Ⅳ.犯罪嫌疑人躲藏的娱乐
最新回复
(
0
)