首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f′(c)|≤2a+。
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f′(c)|≤2a+。
admin
2018-12-29
61
问题
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f′(c)|≤2a+
。
选项
答案
对f(x)在x=c处应用泰勒公式,展开可得 f(x)=f(c)+f′(c)(x—c)+[*](x—c)
2
, (1) 其中ξ=c+θ(x—c),0<θ<1。 在(1)式中令x=0,则有 f(0)=f(c)+f′(c)(0—c)+[*](0—c)
2
,0<ξ
1
<c<1, 在(1)式中令x=1,则有 f(1)=f(c)+f′(c)(1—c)+[*](1—c)
2
,0<c<ξ
2
<1, 将上述的两个式子相减得到 f(1)—f(0)=f′(c)+[*][f″(ξ
2
)(1—c)
2
—f″(ξ
1
)c
2
], 因此 |f′(c)|=|f(1)—f(0)—[*][f″(ξ
2
)(1—c)
2
—f″(ξ
1
)c
2
} ≤|f(1)|+|f(0)|+[*]|f″(ξ
2
)|(1—c)
2
+[*]|f″(ξ
1
)|c
2
≤2a+[*](1—c)
2
+c
2
。 又因当c∈(0,1)时,有(1—c)
2
+c
2
≤1,所以|f′(c)|≤2a+[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/0PM4777K
0
考研数学一
相关试题推荐
设曲线y=x2与y=4所围成的图形的面积为S,则下列各式中,错误的是()
设z=z(x,y)是由方程Ф(cx-az,cy-bz)=0确定的隐函数,其中Ф(u,v)具有连续偏导数,则=______.
设函数f(x)在[2,+∞)上可导且f(2)=1,如果f(x)的反函数g(x)满足=x2f(x)+x,则f(4)=_____.
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,的解.
设∑为柱面x2+y2=5介于一1≤z≤1的部分,则曲面积分的值为().
设函数f(x)在(0,+∞)内连续,且对一切的x、t∈(0,+∞)满足条件:∫1xtf(u)du=t∫1xf(u)du+x∫1tf(u)du.求函数f(x)的表达式.
假设5只晶体管中有两只次品,现在一只一只地检验直到查出两只次品为止.试求:查出两只次品晶体管所需检查的次数Y的概率分布.
设a0,a1,…,an-1是n个实数,方阵若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P,使P-1AP=A.
已知y=lnlnlnx,则y’=__________。
随机试题
A、Shehassomethingwrongwithhernoseonweekends.B、Shehasabadcoldandcan’tgotoschoolonweekdays.C、Hermotherisbu
物流要素之间的关系主要表现为:_____________、______________、____________。
根据艾宾浩斯遗忘曲线规律,防止学习之后快速遗忘的有效办法是()
某公司对某市工商行政管理局的处罚决定不服,提起行政诉讼。但在诉讼过程中,某市工商行政管理局改变了原来的处罚决定,人民法院应该( )。
可以质押的权利包括()。
建立保险储备量的目的,是为了寻求缺货成本的最小化。()
“这个抽屉里或者有一件衣服,或者有一本书。”上述判断是以下哪种情况?()
下列关于“海上丝绸之路”的说法错误的是()。
[A]Butassixyearsstretchedto10,thento14,theanxietyofhealthofficialsgavewaytoastonishment.Althoughtwoofthe
下列程序定义了N×N的二维数组,并在主函数中自动赋值。请编写函数fun(ima[][N]),该函数的功能是:将数组左下半三角元素中的值全部置成0。例如a数组中的值为:19723845
最新回复
(
0
)