首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)的联合分布为 其中a,b,c为常数,且EXY=-0.1,P{X≤0|Y≥2}=,记Z=X+Y.求:(Ⅰ)a,b,c之值;(Ⅱ)Z的概率分布;(Ⅲ)P{Z=X}与P{Z=Y}.
设二维随机变量(X,Y)的联合分布为 其中a,b,c为常数,且EXY=-0.1,P{X≤0|Y≥2}=,记Z=X+Y.求:(Ⅰ)a,b,c之值;(Ⅱ)Z的概率分布;(Ⅲ)P{Z=X}与P{Z=Y}.
admin
2016-10-20
71
问题
设二维随机变量(X,Y)的联合分布为
其中a,b,c为常数,且EXY=-0.1,P{X≤0|Y≥2}=
,记Z=X+Y.求:(Ⅰ)a,b,c之值;(Ⅱ)Z的概率分布;(Ⅲ)P{Z=X}与P{Z=Y}.
选项
答案
(Ⅰ)由联合分布性质,有0.1+a+0.2+6+0.2+0.1+c=1,即 a+b+c=0.4. ① 由EXY=-0.1-2a-0.6+0.2+3e=-0.1[*]3c-2a=0.4. ② 由 P{X≤0|Y≥2}=[*] 3a-5c=-0.7. ③ 联立①,②,③,解方程组[*]得a=0.1,b=0,1,c=0.2. (Ⅱ)由(X,Y)的联合分布 [*] 及Z=X+Y,可知Z的取值为0,1,2,3,4.由于 P{Z=0}=P{X=-1,Y=1}=0.1, P{Z=1}=P{X=0,Y=1}+P{X=-1,Y=2}=0.1+0.1=0.2, P{Z=2}=P{X=0,Y=2}+P{X=-1,Y=3}+P{X=1,Y=1} =0.2+0.2=0.4, P{Z=3}=P{X=0,Y=3}+P{X=1,Y=2}=0.1, P{Z=4}=P{X=1,Y=3}=0.2, 从而得X的概率分布为 [*] (Ⅲ)由X,Y的边缘分布可知 P{Z=Y}=P{X+Y=Y}=P{X=0}=0.3, P{Z=X}=P{X+Y=X}=P{Y=0}=[*]=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/0lT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 C
[*]
已知二次型f(x1,x2,x3)=x12+5x22+x32+2x1x2+2ax2x3为正定二次型,则a的取值范围是——.
设A,B是同阶正定矩阵,则下列命题错误的是().
利用函数的凹凸性,证明下列不等式:
(1)微分方程的阶数是指__________.(2)n阶微分方程的初值条件的一般形式为______________.(3)函数y1(x)与y2(x)在区间I上线性无关的充要条件是___________.(4)函数y=eλx是常系数线性微分方程yn+P
求幂级数的收敛区间,并讨论该区间端点处的收敛性.
假设随机变量X1、X2、X3、X4相互独立,且同分布,P{Xi=0}=0.6,P{Xi=1}=0.4(i=1,2,3,4),求行列式的概率分布.
设随机变量X1,X2,…,Xn相互独立,Sn=X1+X2+…+Xn,则根据列维.林德伯格(Levy-Lindherg)中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,X2,…,Xn
随机试题
甲状腺功能亢进临床表现主要是
患儿女性,7岁,发热伴消瘦1个月,有盗汗,近2周发现腹部膨隆。查体:体温38.5℃,精神稍差,呼吸平稳,心肺(-),腹部膨隆,有移动性浊音,肝脾触诊不满意,神经系统检查(-)。关于腹水渗出液与漏出液的鉴别,下列符合渗出液表现的有
导致感冒的主要原因是
(共犯成立标准:“部分犯罪共同说”犯罪共同为前提部分共同为补充)甲乙共谋教训其共同的仇人丙。由于乙对丙有夺妻之恨,暗藏杀丙之心,但未将此意告诉甲。某日,甲、乙二人共同去丙处。为确保万无一失,甲、乙以入室盗窃为由邀请不知情的丁在楼下望风。进入丙的房间后,甲、
材料吸水率越大,则()。[2011年真题]
下列关于事件的说法,不正确的是()。
在利率一定的条件下,随着预期使用年限的增加,则表述不正确的有()。
小明希望自己能成为班集体的一员,并被其他同学认可,这种动机是()
Insomecountries,societalandfamilialtreatmentoftheelderlyusuallyreflectsagreatdegreeofindependenceandindividual
在VisualFoxPro中,建立索引的作用之一是______。
最新回复
(
0
)