设a<b,证明:不等式 [∫abf(x)g(x)dx]≤∫abf2(x)dx∫abg2(x)dx.

admin2021-11-09  40

问题 设a<b,证明:不等式
    [∫abf(x)g(x)dx]≤∫abf2(x)dx∫abg2(x)dx.

选项

答案构造辅助函数 F(x)=[∫atf(x)g(x)dx]2一∫atf2(x)dx∫atg2(x)dx, 则F(a)=0,且 F’(t)=2∫atf(x)g(x)dx.f(t)g(t)一f2(t)∫atg2(x)dx—g2(t)∫atf2(x)dxt =∫at[2f(x)g(x)f(t)g(t)一f2(t)g2(x)一g2(t)f2(x)]dx =一∫at[f(t)g(x)一g(t)f(x)]2dx≤0, 所以F(b)≤0,即[∫atf(x)g(x)dx]2一∫atf2(x)dx∫atg2(x)dx≤0,即 [∫atf(x)g(x)]2≤∫atf2(x)dx∫atg2(x)dx.

解析
转载请注明原文地址:https://kaotiyun.com/show/10y4777K
0

最新回复(0)