首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(I)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(一1,0,1,0)T,ξ3=(0,1,1,0)T是(I)的一个基础解系,η1=(0,1,0,1)T,η2=(1,1,一1,0)T是(Ⅱ)的一个基础解系.求(I)和(Ⅱ)公共解.
设(I)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(一1,0,1,0)T,ξ3=(0,1,1,0)T是(I)的一个基础解系,η1=(0,1,0,1)T,η2=(1,1,一1,0)T是(Ⅱ)的一个基础解系.求(I)和(Ⅱ)公共解.
admin
2018-11-20
145
问题
设(I)和(Ⅱ)都是4元齐次线性方程组,已知ξ
1
=(1,0,1,1)
T
,ξ
2
=(一1,0,1,0)
T
,ξ
3
=(0,1,1,0)
T
是(I)的一个基础解系,η
1
=(0,1,0,1)
T
,η
2
=(1,1,一1,0)
T
是(Ⅱ)的一个基础解系.求(I)和(Ⅱ)公共解.
选项
答案
(I)有一个基础解系ξ
1
,ξ
2
,ξ
3
,c
1
η
1
+c
2
η
2
满足(I)的充分必要条件为c
1
η
1
+c
2
η
2
能用ξ
1
,ξ
2
,ξ
3
线性表示,即r(ξ
1
,ξ
2
,ξ
3
,c
1
η
1
+c
2
η
2
)=r(ξ
1
,ξ
2
,ξ
3
).于是可以通过计算秩来决定c
1
,c
2
应该满足的条件: [*] 于是当3c
1
+c
2
=0时c
1
η
1
+c
2
η
2
也是(I)的解.从而(I)和(Ⅱ)的公共解为: c(η
1
一3η
2
),其中c可取任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/15W4777K
0
考研数学三
相关试题推荐
袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求下列事件发生的概率:两个球颜色相同.
设求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵,
设n维列向量α=(a,0,…,0,a)T,其中a<0,又A=E一ααT,B=E+ααT,且B为A的逆矩阵,则a=________.
设的一个特征值为λ1=2,其对应的特征向量为ξ1=求常数a,b,c;
设有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设相似于对角阵,求:A100.
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
已知A,B为三阶非零方阵,为齐次线性方程组BX=0的3个解向量,且AX=β3有非零解.(1)求a,b的值;(2)求BX=0的通解.
设随机变量X1和X2相互独立同分布(方差大于零),令X=X1+aX2,Y=X1+bX2(a,b均不为零).如果X与y不相关,则().
设x∈(0,1),证明不等式x<ln(1+x)+aretanx<2x.
随机试题
促红细胞生成素的主要作用是促进
上消化道出血患者,下列哪种情况无需作选择性动脉造影
下列与方剂治法关系最为密切的是
治疗子宫内膜异位症气滞血瘀证,应首选的方剂是
某工程项目,发包人将工程主体结构施工和电梯安装分别发包给了甲、乙两个承包人。乙承包人在进行电梯安装时,由于甲承包人不配合,给乙承包人造成了一定的损失,该损失应当由( )承担。
数控机床对进给伺服驱动系统的主要要求有()。
我国统计部门公布的失业率为()。
在哲学家中,和尼采一样是“生前寂寞,身后承认”的还有()。
以下历史事件发生的先后顺序不正确的是()。
中国人民银行2021年11月8日宣布,推出碳减排支持工具。人民银行有关负责人介绍,创设推出碳减排支持工具这一结构性货币政策工具,以稳步有序、精准直达方式,支持()等重点领域的发展,并撬动更多社会资金促进碳减排。①清洁能源②节能环保
最新回复
(
0
)