首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵 矩阵B=(kE+A)2,其中k为实数,E为单位矩阵.求对角矩阵A,使B与A相似;并求k为何值时,B为正定矩阵.
设矩阵 矩阵B=(kE+A)2,其中k为实数,E为单位矩阵.求对角矩阵A,使B与A相似;并求k为何值时,B为正定矩阵.
admin
2018-07-26
152
问题
设矩阵
矩阵B=(kE+A)
2
,其中k为实数,E为单位矩阵.求对角矩阵A,使B与A相似;并求k为何值时,B为正定矩阵.
选项
答案
由 |λE-A| [*] =λ(λ-2)
2
=0 得A的特征值为λ
1
=λ
2
=2,λ
3
=0. 记对角矩阵 [*] 因A是实对称矩阵,故存在正交矩阵P,使得 P
-1
AP=P
T
AP=D 所以A=PDP
-1
于是 B=(kE+A)
2
=(kPP
-1
+PDP
-1
)
2
=[P(kE+D)P
-1
]
2
=P(kE+D)P
-1
P(kE+D)P
-1
=P(kE+D)
2
P
-1
[*] 由此可得 [*] 亦可由A的特征值为:2,2,0,得kE+A的特征值为:k+2,k+2,k,进而得B=(kE+A)
2
的特征值为:(k+2)
2
,(k+2)
2
,k
2
,从而得实对称矩降B相似于对角阵A. 由上面的结果立刻得到:当k≠-2,且k≠0时,B的特征值均为正数,这时B为正定矩阵.
解析
本题主要考查实对称矩阵及其多项式相似于对角矩阵的问题.注意,若方阵A相似于对角阵,则A的多项也必相似于对角阵.事实上,若存在可逆矩阵P,使
P
-1
AP=D
则对任意正整数m,有P
-1
A
m
P=(P
-1
AP)
m
=D
m
由此可知A的任一多项式也必相似于对角阵.例如,由
P
-1
(A
3
+2A-3E)P=P
-1
A
3
P+2P
-1
AP-3E
即知A的多项式A
3
+2A-3E相似于对角阵.本题第1种解法就是这个思想.
另外,B为实对称矩阵,所以B必相似于对角阵A,而且A的主对角线元素就是B的全部特征值,因而,只要求出了B的全部特征值,也就求出了对角阵A.这就是本题第2种解法的思想.
还需注意,本题只要求求出B的相似对角矩阵,不必求出相似变换的矩阵P.
转载请注明原文地址:https://kaotiyun.com/show/1HW4777K
0
考研数学三
相关试题推荐
证明:
已知袋中有3个白球2个黑球,每次从袋中任取一球,记下它的颜色再将其放回,直到记录中出现4次白球为止.试求抽取次数X的概率分布.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),便f’’(ξ)>0;
给出满足下列条件的微分方程:(I)方程有通解y=(C1+C2x+x-1)e-x;(Ⅱ)方程为二阶常系数非齐次线性方程,并有两个特解
设A是m×n矩阵,B是n×P矩阵,如AB=0,则r(A)+r(B)≤n.
向量组α1=(1,-1,3,0)T,α2=(-2,1,a,1)T,α3=(1,1,-5,-2)T的秩为2,则a=______.
与α1=(1,-1,0,2)T,α2=(2,3,1,1)T,α3=(0,0,1,2)T都正交的单位向量是________.
设λ=2是可逆矩阵A的一个特征值,则的一个特征值是
求曲线上点(0,0)处的切线方程.
随机试题
人民法院在审理行政案件的过程中,认为行政机关的主管人员、直接责任人员违法违纪的,应当()。
食品生产经营者采购食品及原料,必须索取哪些材料
A.既能发散风寒,又能宣通鼻窍B.既能发散风寒,又能温化痰饮C.既能发散风寒,又能和中止呕D.既能发散风寒,又能祛除风湿E.既能发散风寒,又能利水消肿麻黄、香薷都具有的功效是
在图示机构中,杆O1A=O2B,O1A∥O2B,杆O2C=杆O3D,O2C∥O3D,且O1A=20cm,O2C=40cm,若杆O1A以角速度ω=3rad/s匀速转动,则杆CD上任意点M速度及加速度的大小分别为:
先张法预制梁是在混凝土浇筑完成( )h后,再将胶囊气抽走。
宽松的财政政策与紧缩的货币政策使国民收入()。
旅游目的地安全风险提示级别的划分和实施程序,由()会同有关部门制定。
请结合实际说明元认知策略在学习中的运用。
从事生产、经营的纳税人外出经营,在同一地()的,应当在营业地办理税务登记手续。
(2009年多选23)下列犯罪行为中,应以盗窃罪追究刑事责任的是()。
最新回复
(
0
)