首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0. 证明在[-a,a]上至少存在一点η,使得a3f"(η)=3∫-aaf(x)dx。
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0. 证明在[-a,a]上至少存在一点η,使得a3f"(η)=3∫-aaf(x)dx。
admin
2022-10-08
71
问题
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.
证明在[-a,a]上至少存在一点η,使得a
3
f"(η)=3∫
-a
a
f(x)dx。
选项
答案
∫
-a
a
f(x)dx=∫
-a
a
f’(0)xdx+[*]=[*]∫
-a
a
x
2
f"(ξ)dx 因为f"(x)在[-a,a]上连续,故对任意的x∈[-a,a],有m≤f”(x)≤M,其中M,m分别为f"(x)在[-a,a]上的最大值,最小值,所以有 m∫
0
a
x
2
dx≤∫
-a
a
f(x)dx=[*]∫
-a
a
x
2
f"(ξ)dx≤M∫
0
a
x
2
dx 即m≤[*]≤M 因而由f”(x)的连续性可知,至少存在一点η∈[-a,a],使得 f”(η)=[*]∫
-a
a
f(x)dx,即a
3
f"(η)=3∫
-a
a
f(x)dx
解析
转载请注明原文地址:https://kaotiyun.com/show/1YR4777K
0
考研数学三
相关试题推荐
下列不等式中正确的是()
某产品的次品率为0.1,检验员每天检验4次.每次随机地取10件产品进行检验,如果发现其中的次品数多于1,就去调整设备.以X表示一天中调整设备的次数,且诸产品是否为次品是相互独立的,求E(X).
设函数f(x)在x=a可导,且f(a)≠0,则
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f′(x)>0,如果存在,证明:f(x)>0,x∈(a,b);
求幂级数的和函数.
设x=eucosv,y=eusinv,z=uv.试求
设某商品从时刻0到时刻t的销售量为x(t)=kt,t∈[0,T],k>0.欲在T时将数量为A的该商品销售完,试求:t时的商品剩余量,并确定k的值;
若函数f(x)连续,且满足f(x)·f(-x)=1,g(x)是连续的偶函数,试证明:并计算
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点求L位于第一象限部分的一条切线,使该切线与L及两坐标轴所围图形的面积最小.
函数的值域区间是__________.
随机试题
Thissummerthecity’sDepartmentofTransportationstartsanewbike-shareprogram.People【K1】________liveandworkinNewYork
Thereisanotherconversationwhichfromourpointofviewisequallyimportant,andthatistodonotwithwhatisreadbutwit
引起甲状腺弥漫肿大的病因包括
下列语句中,量和单位使用符合规范的有()。
2018年1—12月,全国房地产开发投资120264亿元,比上年增长9.5%。其中,住宅投资85192亿元,增长13.4%,比1—11月回落0.2个百分点,比上年提高4个百分点。按地区划分,2018年,东部地区房地产开发投资64355亿元,比上年增长10
接待()宾客,敬茶时应用右手提供服务。
A、睾丸鞘膜积液B、交通性鞘膜积液C、睾丸肿瘤D、腹股沟斜疝E、精索静脉曲张患者,男,22岁。发现右侧阴囊内鸡蛋大小肿块半年,无痛,平卧后无缩小。扪之有囊性感,透光试验(+)。最可能的诊断为()
患者一周前进食后右上腹痛明显,无明显发热。超声示胆囊大小为8.0cm×3.0cm,壁厚0.4cm,呈双边,囊内可见多发强光团,最大1.6cm,后伴声影,随体位改变有移动。右上腹相当于结肠肝曲位置见8.3cm×6.9cm不均匀光团,与胆囊界限不清,形态不规整
民族问题经常是与宗教问题相联系的,宗教是民族文化中很重要的组成部分。一族多教,一教多派,都可能导致民族宗教冲突。宗教社会学的“冲突派”学者认为,宗教是社会分裂的根源。他们的这些看法不免有失偏颇或夸大,但问题的严重性却是不言而喻的。根据这段文字可以推
我国土壤污染物主要是什么?()
最新回复
(
0
)