首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性齐次方程组(2E—A)x=0有通解x=kξ1=k(-1,1,1)T,其中k是任意常数,A是二次型f(x1,x2,x3)=xTAx的对应矩阵,且r(A)=1. (Ⅰ)问η1=(1,1,0)T,η=(1,一1,0)T是否是方程组Ax=0的解向量,
设线性齐次方程组(2E—A)x=0有通解x=kξ1=k(-1,1,1)T,其中k是任意常数,A是二次型f(x1,x2,x3)=xTAx的对应矩阵,且r(A)=1. (Ⅰ)问η1=(1,1,0)T,η=(1,一1,0)T是否是方程组Ax=0的解向量,
admin
2016-05-03
88
问题
设线性齐次方程组(2E—A)x=0有通解x=kξ
1
=k(-1,1,1)
T
,其中k是任意常数,A是二次型f(x
1
,x
2
,x
3
)=x
T
Ax的对应矩阵,且r(A)=1.
(Ⅰ)问η
1
=(1,1,0)
T
,η=(1,一1,0)
T
是否是方程组Ax=0的解向量,说明理由;
(Ⅱ)求二次型f(x
1
,x
2
,x
3
).
选项
答案
(Ⅰ)A是二次型的对应矩阵,故A
T
=A,由(2E一A)x=0有通解x=kξ
1
=k(一1,1,1)
T
,知A有特征值λ=2,且A的对应于λ=2的特征向量为ξ
1
=(一1,1,1)
T
.r(A)=1,故知λ=0是A的二重特征值. Ax=0的非零解向量即是A的对应于λ=0的特征向量,其应与对应于λ=2的特征向量ξ
1
正交,因ξ
1
η
1
=(一1,1,1)[*]=0,故η
1
是Ax=0的解向量,即是A的对应于λ=0的特征向量. 又ξ
2
η
2
=(一1,1,1)[*]=一2≠0,故η
2
不是Ax=0的解向量. (Ⅱ)求二次型即求其对应矩阵. 求对应λ=0的线性无关特征向量.设为ξ=(x
1
,x
2
,x
3
)
T
,由ξ
1
ξ=一x
1
+x
2
+x
3
=0,解得ξ
2
=η
1
=(1,1,0)
T
,ξ
3
=(1,0,1)
T
(ξ
2
,ξ
3
线性无关),则得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/1hT4777K
0
考研数学三
相关试题推荐
由于中国革命必须分两步走,第一步实现新民主主义革命的任务,第二步实现社会主义革命的任务。这决定了中国革命的主要纲领是()。
在谈到游击战争在抗日战争中的战略地位时,毛泽东说:“抗日战争的作战形式中,主要的是运动战,其次就要算是游击战了。我们说,整个战争中,运动战是主要的,游击战是辅助的……但这不是说:游击战在抗日战争中的战略地位不重要。”抗日战争中游击战争的战略地位和作用是(
商品经济产生和存在的决定性条件是()。
设A是n×m矩阵,B是m×n矩阵,其中n
一根长为l的棍子在任意两点折断,试计算得到的三段能围成三角形的概率.
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
求下列参数方程所确定的函数的二阶导数d2y/dx2.设f〞(t)存在且不为零.
求方程karctanx-x=0不同实根的个数,其中k为参数.
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式|B-1-E|=_________.
五阶行列式D==________.
随机试题
A.由纤维组织及内皮细胞修复B.由周围的腺上皮细胞修复C.由肉芽组织及周围腺上皮细胞修复D.由周围的鳞状上皮细胞修复胃溃疡愈合
可摘局部义齿人工后牙颊舌径宽度小于天然牙的目的是
城市化水平与经济发展关系的曲线表明,经济发展的前期阶段人均GNP增加一定数量(如100美元),需要相应提高的城镇人口比重的幅度应该()。
原材料账户期初余额为50万元,本期购进原材料30万元,生产领用原材料40万元,则期末账户上的原材料为()万元。
在归整或保存审计工作底稿时,下列表述中正确的是()。
运动负荷就是负荷量,它是由时间、数量和距离组成的。()
某居民违章搭建,严重影响市容。执法人员对他说:“如果你不在规定期限内自行拆除。那么,我们将依法强拆。”该居民回答:“我坚决不同意。”按照居民的说法,下列哪项判断是他同意的?()
私自拆阅邮件或窃听公民电话等通讯内容的行为是侵犯公民()的行为。
马克思主义唯物史观产生前,唯心史观长期占统治地位的根源在于()。
WhathelpsmaketheMiddleAtlanticStatesamajorcenterofinternationaltrade?
最新回复
(
0
)