首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(I)和(Ⅱ)都是3元非齐次线性方程组,(I)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1,),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(I)和(Ⅱ)的公共解.
设(I)和(Ⅱ)都是3元非齐次线性方程组,(I)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1,),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(I)和(Ⅱ)的公共解.
admin
2018-11-20
51
问题
设(I)和(Ⅱ)都是3元非齐次线性方程组,(I)有通解ξ
1
+c
1
η
1
+c
2
η
2
,ξ
1
=(1,0,1,),η
1
=(1,1,0),η
2
=(1,2,1);(Ⅱ)有通解ξ
2
+cη,ξ
2
=(0,1,2),η=(1,1,2).求(I)和(Ⅱ)的公共解.
选项
答案
公共解必须是(Ⅱ)的解,有ξ
2
+cη,的形式,它又是(I)的解,从而存在c
1
,c
2
使得 ξ
2
+cη=ξ
1
+c
1
η
1
+c
2
η
2
,于是ξ
2
+cη一ξ
1
可用η
1
,η
2
线性表示,即r(η
1
,η
2
,ξ
2
+cη一ξ
1
)=r(η
1
,η
2
)=2. [*] 得到c=1/2,从而(I)和(Ⅱ)有一个公共解ξ
2
+η/2=(1/2,3/2,3).
解析
转载请注明原文地址:https://kaotiyun.com/show/25W4777K
0
考研数学三
相关试题推荐
设α1,…,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β一α1,…,β—αm线性无关.
设u=且二阶连续可导,又=0,求f(x).
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f()一1,f(1)=0.证明:对任意的k∈(一∞,+∞),存在ξ∈(0,η),使得f’(ξ)一k[f(ξ)一ξ]=1.
设向量组α1,α2,α3,β1线性相关,向量组α1,α2,α3,β2线性无关,则对于任意常数k,必有().
设线性方程组有非零解,则组成基础解系的线性无关的解向量有().
若随机变量X~N(2,σ2),且概率P(2<X<4)=0.3,则概率P(X<0)等于().
已知三元二次型f(x1,x2,x3)=XTAX,矩阵A的对角元素之和为3,且AB+B=0,其中(1)用正交变换将二次型化为标准形,并写出所用的坐标变换;(2)求出此二次型;(3)若β=[4,一1,0]T,求A*β.
设α1,α2,α3,α4为四维非零列向量,A=[α1,α2,α3,α4],A*为A的伴随矩阵,又知方程组AX=0的基础解系为[1,0,2,0]T,则方程组A*X=0的基础解系为().
随机试题
Oneofthepoliticalissueswehearalotaboutlatelyiscampaignfinancereform.Thepeoplewhoarecallingfor【21】usuallywan
尿路感染最常见的致病菌是
A.乳房囊性增生病B.乳管内乳头状瘤C.乳癌D.急性乳房炎E.乳房纤维腺瘤
A.利水渗湿,健脾止泻B.利尿通淋,渗湿止泻,明目,祛痰C.化湿行气,温中止泻D.清热解毒,燥湿止泻E.利尿通淋,破血通经瞿麦的功效是
对纠正体内电解质失调有显著效果的溶液是
吊顶骨架的()应符合设计要求。
在我国,企业债券是按照《企业债券管理条例》规定发行与交易、由()监督管理的债券。
Pupil:Sorry,Mr.Wang.I’mlate.Myalarmclockdidn’tring.Teacher:______.
Whattopicarethemanandwomandiscussing?
A、Toentertheman’sapartment.B、Themanforgotwherehehidit.C、Themanforgotit.D、Themanlostit.A男士说:“进我公寓了吗(getinto
最新回复
(
0
)