首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
admin
2019-04-08
71
问题
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x
2
y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
选项
答案
(1)由全微分方程的充要条件[*]知 f’’(x)+2xy=x
2
+2xy-f(x), 即 f’’(x)+f(x)=x
2
. ① 此方程的齐次方程f’’(x)+f(x)=0的通解为Y=C
1
cosx+C
2
sinx.非齐次方程①的特解形式为y
*
=ax
2
+bx+c,代入方程①,得a=1,b=0,c=一2.于是y
*
=x
2
一2.方程①的通解为 f(x)=C
1
cosx+C
2
sinx+x
2
一2. 由f(0)=0,f’(0)=1,求得C
1
=2,C
2
=1,从而得f(x)=2cosx+sinx+x
2
一2. (2)将f(x)的表达式代入原方程中,得 [xy
2
一(2cosx+sinx)y+2y]dx+(一2sinx+cosx+2x+x
2
y)dy=P(x,y)dx+Q(x,y)dy=0, ② 其中P(x,y),Q(x,y)分别为上式中dx,dy前面的系数函数.其通解可用积分法求之.为此取特殊路径(折线路径)积分: u(x,y)=∫
(0,0)
(x,y)
P(x,y)dx+Q(x,y)dy=∫
0
x
P(x,0)dx+Q(x,0)·0+∫
0
y
P(x,y)·0+Q(x,y)dy =∫
0
y
Q(x,y)dy=∫
0
y
(一2sinx+cosx+2x+x
2
y)dy =一2ysinx+ycosx+2xy+x
2
y
2
/2, 所以所给全微分方程的通解为一2ysinx+ycosx+x
2
y
2
/2+2xy=C.
解析
转载请注明原文地址:https://kaotiyun.com/show/2D04777K
0
考研数学一
相关试题推荐
(1998年)设z=f(xy)+yφ(x+y),f,φ具有二阶连续导数,则
设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22-y32,其中P=(e1,e2,e3),若Q=(e1,-e3,e2),f(x1,x2,x3)在正交变换x=Qy下的标准形为()
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
设总体X的概率密度为其中θ∈(0,+∞)为未知参数X1,X2,…,Xn为来自总体X的简单随机样本,T=max{X1,X2,…,Xn}。(Ⅰ)求T的概率密度;(Ⅱ)确定a,使得aT为θ的无偏估计。
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.
设向量组α1,α2,α3为R3的一个基,β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3.(I)证明向量组β1,β2,β3为R3的一个基;(Ⅱ)当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,并求所有的
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
求微分方程xy’+(1一x)y=e2x(x>0)的满足=1的特解.
求下列平面上曲线积分I=∫L[y2-2xysin(x2)]dx+cos(x2)dy,其中L为椭圆=1的右半部分,从A(0,-b)到B(0,b).
随机试题
关于试带法测尿红细胞,错误的是
A.原发综合症B.干酪性肺炎C.结核球D.浸润型肺结核E.局灶型肺结核
A.国家工商行政管理部门B.国家卫生和计划生育委员会、国家中医药管理局C.人力资源和社会保障部D.国家食品药品监督管理总局组织实施药品分类管理的牵头部门是()。
从会计法律制度与会计职业道德在地位上相互转化、相互吸收的角度看,下列表述中,正确的是()。
维护访问的优势在于它能够减少客户寻求其他金融机构服务的需求,排斥竞争者,赢得客户对银行的忠诚。()
下列哪部法律不涉及公民个人信息保护?
在下列叙述中,正确的是()。
国家赔偿以支付赔偿金为主要方式。()
设矩阵X=(xij)3×3为未知矩阵,问a、b、c各取何值时,矩阵方程AX=B有解?并在有解时,求出其全部解.
SQL中可使用的通配符有______。
最新回复
(
0
)