首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
admin
2018-04-08
80
问题
已知四阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为四维列向量,其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
一α
3
。若β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解。
选项
答案
由α
1
,α
3
,α
4
线性无关及α
1
=2α
2
-α
3
知,r(α
1
,α
2
,α
3
,α
4
)=3,即矩阵A的秩为3。因此Ax=0的基础解系中只包含一个向量。那么由(α
1
,α
2
,α
3
,α
4
)[*]=α
1
-2α
2
+α
3
=0知, Ax=0的基础解系是(1,-2,1,0)
T
。再由 β=α
1
+α
2
+α
3
+α
4
=(α
1
,α
2
,α
3
,α
4
)[*] 知,(1,1,1,1)
T
是Ax=β的一个特解,故Ax=β的通解是 [*] 其中k为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/wlr4777K
0
考研数学一
相关试题推荐
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.
设矩阵,矩阵X满足AX+E=A2+X,其中E为3阶单位矩阵.求矩阵X
设可逆,其中A,D皆为方阵,求证:A,D可逆,并求M-1.
已知3维向量组α1,α2,α3线性无关,则向量组α1一α2,α2一kα3,α3一α1也线性无关的充要条件是k__________.
已知B是n阶矩阵,满足B2=E(此时矩阵B称为对合矩阵).求B的特征值的取值范围.
设A是s×n矩阵,B是A的前m行构成的m×n矩阵,已知A的行向量组的秩为r.证明:r(B)≥r+m—s.
设3阶矩阵A与B相似,λ1=1,λ2=-2是矩阵A的两个特征值,且矩阵B的行列式|B|=1,则行列式|A*+E|=________.
设三阶方阵A、B满足A2B—A—B=E,其中E为三阶单位矩阵,若A=,则行列式|B|=________.
已知3阶矩阵A与3维向量x.使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x.(1)记P=(xAxA2x),求3阶矩阵B,使A=PBP—1;(2)计算行列式|A+E|.
随机试题
要使社会安定,秩序正常,除了法制手段以外,还需要_______来约束人们的行为。
在一组结构完全相同(直径、长度、匝数等)的线圈中,电感量最大的是()。
A.肺活量B.时间肺活量C.潮气量D.无效腔气量E.肺泡通气量
痛经,下述哪项不正确
某水电站建设项目为规划径流式7梯级开发电站中的第三级。该河流有国家级保护鱼类,其中有鲑科鱼类两种;河流两岸森林较为茂密,有国家二级保护植物和二级保护鸟类。工程土石方量1000万m3,需移民3000人,拟建设为引水式电站,大坝高130m,长3000m,坝址下
耐火砖砌筑时,拱和拱顶必须()砌筑,严禁将拱砖的大小头倒置。
龙债券具有( )的特征。
个人贷款的特征包括()。
许多人的人生之所以失败,就是因为对自己的人生缺乏________策划,或者缺乏有效的策划,因此总是被命运和生活所________,不能自主人生。填入画横线部分最恰当的一项是:
Itisanticipatedthatbytheendofthismonthoilprice______byabout10%.
最新回复
(
0
)