首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,...,αs 均为n维向量,下列结论不正确的是
设α1,α2,...,αs 均为n维向量,下列结论不正确的是
admin
2019-02-23
49
问题
设α
1
,α
2
,...,α
s
均为n维向量,下列结论不正确的是
选项
A、若对于任意一组不全为零的数k
1
,k
2
,…,k
s
,都有k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0,则α
1
,α
2
,...,α
s
,线性无关.
B、若α
1
,α
2
,...,α
s
线性相关,则对于任意一组不全为零的数k
1
,k
2
,…,k
s
,有k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0
C、α
1
,α
2
,...,α
s
线性无关的充分必要条件是此向量组的秩为s.
D、α
1
,α
2
,...,α
s
线性无关的必要条件是其中任意两个向量线性无关.
答案
B
解析
按线性相关定义:若存在不全为零的数k
1
,k
2
,…,k
s
,使
k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0,
则称向量组α
1
,α
2
,...,α
s
线性相关.
因为线性无关等价于齐次方程组只有零解,那么,若k
1
,k
2
,…,k
s
不全为0,则(k
1
,k
2
,…,k
s
)
T
必不
是齐次方程组的解,即必有k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0.可知(A)是正确的,不应当选.
因为“如果α
1
,α
2
,...,α
s
线性相关,则必有α
1
,α
2
,...,α
s+1
线性相关”,所以,若α
1
,α
2
,...,α
s
中有某两个向量线性相关,则必有α
1
,α
2
,...,α
s
线性相关.那么α
1
,α
2
,...,α
s
线性无关的必要条件是其任一个部分组必线性无关.因此(D)是正确的,不应当选.
转载请注明原文地址:https://kaotiyun.com/show/2I04777K
0
考研数学一
相关试题推荐
级数的收敛域是________
设X1,X2,…,Xn是取自正态总体N(μ,σ2)的一个样本,其中σ2未知,检验假设H0:μ=μ0,H1:μ≠μ0,则选取的统计量及其拒绝域分别是().
设随机变量X,Y,Z相互独立,且X~N(1,2),Y~N(2,2),Z~N(3,7),记a=P{X<Y},b=P{Y<Z),则().
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT,求:(1)A2;(2)矩阵A的特征值和特征向量.
设二维连续型随机变量(X,Y,在区域D上服从均匀分布,其中D={(z,y)||x+y|≤1,|x一y|≤1},求X的边缘密度fX(x)与在X=0条件下,关于Y的条件密度fY|X(y|0).
设随机变量X满足发生的情况下,X在(-1,1)内任一子区间上的条件概率与该子区间长度成正比.求X的分布函数;
设X1,X2,…,Xn+1是取自正态总体N(0,σ2)的简单随机样本,记
设A(2,2),B(1,1),Г是从点A到点B的线段下方的一条光滑定向曲线y=y(x),且它与围成的面积为2,又φ(y)有连续导数,求曲线积分I=∫Г[πφ(y)cosπx一2πy]dx+[φ’(y)sinπx一2π]dy.
设f(x)为二阶可导的奇函数,且x<0时有f’’(x)>0,f’(x)<0,则当x>0时有().
设2n阶行列式D的某一列元素及其余子式都等于a,则D=()
随机试题
小儿肥胖症(单纯性)临床表现应为()。
中美两国都是世界贸易组织成员。《保护工业产权巴黎公约》、《保护文学艺术作品伯尔尼公约》和《与贸易有关的知识产权协定》对中美两国均适用。据此,下列哪一选项是正确的?
下列关于各类银行结算账户的表述中,正确的是()。
在学习过程中投人情感,获得内在动力支持,并有情感体验,具有这样特征的学习方法是()。
0,1,2,5,12,()。
吴某向人民法院提起行政诉讼,法院以向上级请求为由一直未予任何答复.吴某应当如何处理?()
试述大清律的制定和发展。
下列可作为VisualBasic变量名的是______。
HowAmerica’sMostSuccessfulExecutivesAccomplishSoMuchinSoLittleTimeTheyheadthenation’sbiggest,fastest-grow
A、Ahouse.B、Acar.C、Ahotel.D、Anartgallery.A由对话开头女士提到的I’mgladthatyouhavedecidedtotakealook可知,男士决定要看某件东西;接着男士说他的妻子
最新回复
(
0
)