首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ):α1=(2,4,-2)T,α2=(-1,a-3,1)T,α3=(2,8,b-1)T;(Ⅱ):β1=(2,b+5,-2)T,β2=(3,7,a-4)T,β3=(1,2b+4,-1)T.问. a,b取何值时,r(Ⅰ)=r(Ⅱ),且(Ⅰ)与(Ⅱ
设向量组(Ⅰ):α1=(2,4,-2)T,α2=(-1,a-3,1)T,α3=(2,8,b-1)T;(Ⅱ):β1=(2,b+5,-2)T,β2=(3,7,a-4)T,β3=(1,2b+4,-1)T.问. a,b取何值时,r(Ⅰ)=r(Ⅱ),且(Ⅰ)与(Ⅱ
admin
2021-02-25
43
问题
设向量组(Ⅰ):α
1
=(2,4,-2)
T
,α
2
=(-1,a-3,1)
T
,α
3
=(2,8,b-1)
T
;(Ⅱ):β
1
=(2,b+5,-2)
T
,β
2
=(3,7,a-4)
T
,β
3
=(1,2b+4,-1)
T
.问.
a,b取何值时,r(Ⅰ)=r(Ⅱ),且(Ⅰ)与(Ⅱ)等价?
选项
答案
以α
1
,α
2
,α
3
,β
1
,β
2
,β
3
为列作矩阵,并对该矩阵作初等行变换化成行阶梯形矩阵: [*] 由以上行阶梯形矩阵,得 当a≠1,b≠-1时,|α
1
,α
2
,α
3
|≠0,|β
1
,β
2
,β
3
|≠0,故此时r(Ⅰ)=r(Ⅱ)=r(Ⅰ,Ⅱ)=3,所以(Ⅰ)与(Ⅱ)等价. 当a=1,b=-1时,r(Ⅰ)=r(Ⅱ)=r(Ⅰ,Ⅱ)=2,故(Ⅰ)与(Ⅱ)也等价.
解析
本题考查在秩相等的条件下判断两向量组是否等价,需要从等价定义出发,即从(Ⅰ)可由(Ⅱ)线性表示,且(Ⅱ)又可由(Ⅰ)线性表示来考虑,也就是r(Ⅰ)=r(Ⅱ)=r(Ⅰ,Ⅱ).
转载请注明原文地址:https://kaotiyun.com/show/2i84777K
0
考研数学二
相关试题推荐
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
设A,B和C都是n阶矩阵,其中A,B可逆,求下列2n阶矩阵的伴随矩阵.
证明
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记un=f(n),n=1,2,…,又u1<u2,证明
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=.证明:存在ξ∈(0,2),使得f’’’(ξ)=2.
求常数m,n,使得
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。求a的值;
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求Ax=0的一个基础解系.
随机试题
下列行为中不属于行政行为的是()。
模型灌注后最佳的脱模时应控制在A.10~20minB.30~40minC.50minD.1~2hE.2.5h
有机磷农药中毒原理是
内痔脾虚气陷型该用何方治疗内痔风伤肠络型该用何方治疗
我国对外开放的格局表述正确的是()。
评价信贷资产质量的指标不包括()。
“勉从虎穴暂栖身,说破英雄惊煞人。巧将闻雷来掩饰,随机应变信如神。”这首诗说的是《三国演义》中一段故事。这个故事是:
菜园里的白菜获得丰收,收到时,装满4筐还多24斤,其余部分收完后刚好又装满了8筐,菜园共收获了白菜().
Today,ifyoumadealistofthemassmediayouuse,youwouldhavetoaddnewertechnologiessuchascable,satelliteTV,PDAs
HowmanykindsofdoctorsarethereintheUS?Whatkindofdiseasedospecialiststreat?Specialhealthproblems,suchasa__
最新回复
(
0
)