首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ):α1=(2,4,-2)T,α2=(-1,a-3,1)T,α3=(2,8,b-1)T;(Ⅱ):β1=(2,b+5,-2)T,β2=(3,7,a-4)T,β3=(1,2b+4,-1)T.问. a,b取何值时,r(Ⅰ)=r(Ⅱ),且(Ⅰ)与(Ⅱ
设向量组(Ⅰ):α1=(2,4,-2)T,α2=(-1,a-3,1)T,α3=(2,8,b-1)T;(Ⅱ):β1=(2,b+5,-2)T,β2=(3,7,a-4)T,β3=(1,2b+4,-1)T.问. a,b取何值时,r(Ⅰ)=r(Ⅱ),且(Ⅰ)与(Ⅱ
admin
2021-02-25
41
问题
设向量组(Ⅰ):α
1
=(2,4,-2)
T
,α
2
=(-1,a-3,1)
T
,α
3
=(2,8,b-1)
T
;(Ⅱ):β
1
=(2,b+5,-2)
T
,β
2
=(3,7,a-4)
T
,β
3
=(1,2b+4,-1)
T
.问.
a,b取何值时,r(Ⅰ)=r(Ⅱ),且(Ⅰ)与(Ⅱ)等价?
选项
答案
以α
1
,α
2
,α
3
,β
1
,β
2
,β
3
为列作矩阵,并对该矩阵作初等行变换化成行阶梯形矩阵: [*] 由以上行阶梯形矩阵,得 当a≠1,b≠-1时,|α
1
,α
2
,α
3
|≠0,|β
1
,β
2
,β
3
|≠0,故此时r(Ⅰ)=r(Ⅱ)=r(Ⅰ,Ⅱ)=3,所以(Ⅰ)与(Ⅱ)等价. 当a=1,b=-1时,r(Ⅰ)=r(Ⅱ)=r(Ⅰ,Ⅱ)=2,故(Ⅰ)与(Ⅱ)也等价.
解析
本题考查在秩相等的条件下判断两向量组是否等价,需要从等价定义出发,即从(Ⅰ)可由(Ⅱ)线性表示,且(Ⅱ)又可由(Ⅰ)线性表示来考虑,也就是r(Ⅰ)=r(Ⅱ)=r(Ⅰ,Ⅱ).
转载请注明原文地址:https://kaotiyun.com/show/2i84777K
0
考研数学二
相关试题推荐
已知线性方程组(1)a、b为何值时,方程组有解?(2)当方程组有解时,求出方程组的导出组的一个基础解系.(3)当方程组有解时,求出方程组的全部解.
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
证明n维向量α1,α2……αn线性无关的充要条件是
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记un=f(n),n=1,2,…,又u1<u2,证明
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式abc2≤27()5(a>0,b>0,c>0).
设四阶矩阵B满足,求矩阵B.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。将β1,β2,β3由α1,α2,α3线性表示。
设A是n阶矩阵,证明:A=O的充要条件是AAT=O.
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
随机试题
在配送系统中,理货是配送的()。
清代中央负责处理内阁上呈皇帝的奏章事务的秘书性机构是【】
有关生活质量的叙述错误的是
合理的决策必须满足下列()基本条件。
采用多角经营控制风险的唯一前提是所经营的各种商品的利润率存在负相关关系。()
孙某在服现役期间在执行军事演习时不幸牺牲,被批准为烈士。根据《烈士褒扬条例》由民政部门向其遗属颁发烈士证书。关于证书的发放,下列做法正确的是()。
中医“望、闻、问、切”的诊断方法体现了思维的()。
创新:僵化
Ifyoucan’tresistthechancetoputonabet,blameyourinsula—aregionofyourbrain.Scientiststhinkthatwhenthisbrain
在网络管理模型中,管理者和代理之间的信息交换可以分为酣中:—种是从管理者到代理的管理操作;另一种是从代理到管理者的______。
最新回复
(
0
)