设函数f(x,y)连续,则累次积分∫12dx∫x2f(x,y)dy+∫12dy∫y4-yf(x,y)dx等于

admin2020-02-27  44

问题 设函数f(x,y)连续,则累次积分∫12dx∫x2f(x,y)dy+∫12dy∫y4-yf(x,y)dx等于

选项 A、∫12dy∫y2f(x,y)dx.
B、∫12dx∫14-xf(x,y)dy.
C、∫12dy∫14-yf(x,y)dx.
D、∫12dx∫x4-xf(x,y)dy.

答案C

解析 由题设所给累次积分可画出积分区域如图所示,故有
I=∫12dy∫14-yf(x,y)dx.
转载请注明原文地址:https://kaotiyun.com/show/2kD4777K
0

最新回复(0)