首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 设三阶实对称矩阵A的各行元素之和为3.向量α1=[-1,2,-1]T,α2=[0,-1,1]T都是齐次线性方程组AX=0的解.求A的特征值和特征向量.
[2006年] 设三阶实对称矩阵A的各行元素之和为3.向量α1=[-1,2,-1]T,α2=[0,-1,1]T都是齐次线性方程组AX=0的解.求A的特征值和特征向量.
admin
2021-01-25
101
问题
[2006年] 设三阶实对称矩阵A的各行元素之和为3.向量α
1
=[-1,2,-1]
T
,α
2
=[0,-1,1]
T
都是齐次线性方程组AX=0的解.求A的特征值和特征向量.
选项
答案
由命题2.5.1.3知,三阶矩阵A有一个特征值3,且α
3
=[1,1,1]
T
为A的属于特征值3的特征向量. 或由[*]知,3是A的一个特征值,α
3
=[1,1,1]
T
为A的属于特征值3的特征向量,则A的属于特征值3的所有特征向量为c
1
α
2
,c
1
为不等于0的任意常数. 又由命题2.5.1.10知,α
1
,α
2
是A的属于特征值0的特征向量,或由Aα
1
=0α
1
,Aα
2
= 0α
2
也可看出这一点,所以A的特征值为3,0,0,且属于λ=0的特征向量为 k
1
α
1
+k
2
α
2
=k
1
[-1,2,-1]
T
+k
2
[0,-1,1]
T
(k
1
,k
2
为不全为0的常数). 注:命题2.5.1.1 λ
0
是矩阵A的特征值当且仅当|λ
0
E-A|=0. 对于数字型矩阵,常用特征方程|λE-A|=0求其特征值λ. 为求特征值λ
i
所对应的所有特征向量,只需解方程组(λ
i
E-A)X=0. 命题2.5.1.10 设α≠0为A
n×n
=0的解,则α为A的属于特征值0的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/2tx4777K
0
考研数学三
相关试题推荐
设f(x),g(x)在区间[a,b]上连续,且g(x)<f(x)<m,则由曲线y=g(x),y=f(x)及直线x=a,x=b所围成的平面区域绕直线y=m旋转一周所得旋转体体积为().
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则
设0<P(A)<1,0<P(B)<1,且P(A|B)+=1,则下列结论正确的是().
设函数f(x)连续,则在下列变上限积分定义的函数中,必为偶函数的是()
设函数f(x)=|x3—1|φ(x),其中φ(x)在x=1处连续,则φ(1)=0是f(x)在x=1处可导的()
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α23,α3
设f’(x)在[a,b]上连续,且f’(a)>0,f’(b)<0,则下列结论中错误的是()
已知随机事件A,B满足条件AB∪,则()
设A是秩为n—1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
曲线的渐近线有()
随机试题
简述对用户进行培训的作用。
预测方法的两个基本要求是()
加味逍遥散是在逍遥散的基础上加
A.胎儿心率每分钟持续在150次以上B.胎儿心率每分钟持续在120次,历时10分钟C.胎儿心率有基线摆动D.胎儿心率静止型E.胎儿心率有变异提示胎儿储备功能丧失
在以()km为半径的范围内,可以用水平面代替水准面进行距离测量。
下列说法中符合非居民企业纳税规定的有()。
甲公司和A公司所得税采用资产负债表债务法核算,适用的所得税税率均为25%。甲公司与A公司2015年度有关资料如下:(1)甲公司2015年1月1日发行股票10000万股取得A公司70%的股权,并能够对A公司实施控制。甲公司普通股股票每股面值为1元,发行日
国家通过调节利率高低可以影响经济活动。一般认为,利息增加带来的经济影响是()。
Itisclearthatsomepeoplewhoparticipateinexercisetrainingwilldevelopinjuriestotheirbones,muscles,andjoints(关节).
CigaretteLabels,WillTheyWork?A)TheFoodandDrugAdministration(FDA)—whichhaschosennineimagestobeplacedprominen
最新回复
(
0
)