首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n。
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n。
admin
2019-05-14
38
问题
设A为m阶实对称矩阵且正定,B为m×n实矩阵,B
T
为B的转置矩阵,试证:B
T
AB为正定矩阵的充分必要条件是r(B)=n。
选项
答案
必要性:设B
T
AB为正定矩阵,则由定义知,对任意的n维实列向量x≠0,有x
T
(B
T
AB)x>0,即(Bx)
T
A(Bx)>0。于是,Bx≠0。因此,Bx=0只有零解,故有r(B)=n。 充分性:因(B
T
AB)
T
=B
T
A
T
(B
T
)
T
=B
T
AB,故B
T
AB为实对称矩阵。 若r(B)=n,则线性方程组Bx=0只有零解,从而对任意的n维实列向量x≠0,有Bx≠0。 又A为正定矩阵,所以对于Bx≠0,有(Bx)
T
A(Bx)>0。于是当x≠0,有x
T
(B
T
AB)x=(Bx)
T
A(Bx)>0,故B
T
AB为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/3Y04777K
0
考研数学一
相关试题推荐
设f(x)在区间[0,2]上连续,在(0,2)内二阶可导,且f(0)=∫01f(x)dx=,证明:存在ξ∈(0,2),使得f"(ξ)=0。
设bn为两个正项级数。证明:若an收敛。
设f(x)是周期为2的周期函数,它在区间(一1,1]上定义为则f(x)的傅里叶级数在x=1处收敛于___________。
设函数φ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数。(Ⅰ)证明:对右半平面x>0内的任意分段光滑简单闭曲线C,有(Ⅱ)求函数φ(y)的表达式。
在椭球面χ2+2y2+z2=1上求一点使函数f(χ,y,z)=χ2+y2+z2在该点沿方向l=(1.-1.0)的方向导数最大.
齐次方程组,求它的一个基础解系.
已知3阶矩阵A与3维列向量α,若α,Aα,A2α线性无关,且A3α=3Aα-2A2α,试求矩阵A的特征值与特征向量.
(2009年)设Ω={(x,y,z)|x2+y2+z2≤1},则
设P(x,y,z),Q(x,y,z)与R(x,y,z)在空间区域Ω内连续并且有连续的一阶偏导数,则“当(x,y,z)∈Ω时”是“对于Ω内的任意一张逐片光滑的封闭曲面S,(x,y,z)dydz+Q(x,y,z)dydz+R(x,y,z)dxdy=0”的
设函数f(x)在[0,π]上连续,且∫0πf(x)sinxdx=0,∫0πf(x)cosxdx=0.证明:在(0,π)内f(x)至少有两个零点.
随机试题
TheNationalBasketballAssociation(NBA)isthemajorprofessionalbasketballleagueintheworld,withteamsfromtheUnitedS
幸存的流行性乙型脑炎患者智力低下是由于
突出体现医德情感作用的是突出体现医德良心作用的是
腰间盘突出症与椎管内肿瘤最有鉴别意义的辅助检查是
在不考虑资金时间价值影响的条件下,设备年等额总成本的计算公式是()。
我国东北—西南走向的山脉主要有三列,最西边的一列是()。
阅读以下文字,完成下列问题。《进一步做好新形势下就业创业工作重点任务分工方案》(以下简称《分工方案》)已经国务院同意,请各省、自治区、直辖市人民政府以及国务院有关部门认真落实。有关部门要认真贯彻实施甲,按照《分工方案》的要求,进一步分解
Banksmanagetheirassetsconsidering______.
Thechangesinlanguagewillcontinueforever,butnooneknowssurewhodoesthechanging.Onepossibilityismatchildrenare
Anebook,alsoknownasanelectronic(电子的)book,isanelectronicversion(版本)ofaprintofbookthatyoucandownload(下载)andr
最新回复
(
0
)