首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型xTAx的平方项系数都为0,α=(1,2,-1)T满足Aα=2α。 (Ⅰ)求xTAx的表达式; (Ⅱ)求作正交变换x=Qy,把xTAx化为标准二次型。
已知三元二次型xTAx的平方项系数都为0,α=(1,2,-1)T满足Aα=2α。 (Ⅰ)求xTAx的表达式; (Ⅱ)求作正交变换x=Qy,把xTAx化为标准二次型。
admin
2018-11-16
18
问题
已知三元二次型x
T
Ax的平方项系数都为0,α=(1,2,-1)
T
满足Aα=2α。
(Ⅰ)求x
T
Ax的表达式;
(Ⅱ)求作正交变换x=Qy,把x
T
Ax化为标准二次型。
选项
答案
(Ⅰ)设A=[*],则条件Aα=2α即 [*] 得2a-b=2,a-c=4,b+2c=-2,解出a=b=2,c=-2。此二次型为4x
1
x
2
+4x
1
x
3
-4x
2
x
3
。 (Ⅱ)先求A的特征值 [*] 于是A的特征值就是2,2,-4,再求单位正交特征向量组:属于2的特征向量是(A-2E)x=0的非零解。[*]得(A-2E)x=0的同解方程组:x
1
- x
2
-x
3
=0。 显然β
1
=(1,1,0)
T
是一个解,设第二个解为β
2
=(1,-1,c)
T
(这样的设定保证了两个解是正交的!),代入方程得c=2,得到属于特征值2的两个正交的特征向量β
1
,β
2
,再把它们单位化:记[*],属于-4的特征向量是(A+4E)x=0的非零解。求出β
3
=(1,-1,-1)
T
是一个解,单位化:记[*],则η
1
,η
2
,η
3
是A的单位正交特征向量组,特征值依次为2,2,-4。作正交矩阵Q=(η
1
,η
2
,η
3
),则Q
-1
AQ是对角矩阵,对角线上的元素为2,2,-4。作正交变换x=Qy,它把f(x
1
,x
2
,x
3
)化为2y
1
2
+2y
2
2
-4y
3
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/58W4777K
0
考研数学三
相关试题推荐
设=c(≠0),求n,c的值.
设f(x)=a1ln(l+x)+a2ln(1+2x)+…+anln(1+nx),其中a1,a2,…,an为常数,且对一切x有|f(x)|≤|ex一1|.证明:|a1+2a2+…+nan|≤1.
设证明A可对角化;
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本,证明:都是参数θ的无偏估计量,试比较其有效性.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组Ax=0与BX=0有公共的非零解.
设随机变量X的密度函数为f(x)=求常数A;
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=二次型g(X)=XTAX是否与f(x1,x2,…,xn)合同?
设f(x)二阶可导,且f(0)=0,令(I)确定a的取值,使得g(x)为连续函数;(II)求g’(x)并讨论函数g’(x)的连续性.
设f(x)在x=a处连续,讨论φ(x)=f(x)|arctan(x一a)|在x=a处的连续性与可导性.
讨论f(x,y)=在点(0,0)处的连续性、可偏导性及可微性.
随机试题
巴斯德效应是指
变电所中,对35kV由浸并联电抗器应装设下列哪几种保护?
下列选项中,正确的是()。
具有结构紧凑、加热均匀、热量稳定、控制方便等优点的换热器是()。
[背景资料]某三级公路地处丘陵地区,砂类土居多,设计车速40km/h,路基宽度8.5m,基层为石灰稳定砂砾,面层为8cm的沥青混凝土。施工过程部分事件摘要如下:事件一:路基施工正好赶上雨期,施工前,施工方做了如下准备工作:
下列项目中,可以从应纳税所得额中扣除的有()。
ISO9000标准制定的背景主要是()。
下列能力中,属于一般能力的是()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。()
某大学法学院72名研究生当中有36人是中国法律援助网志愿者,有28人是广东省法律援助中心志愿者,还有一些同学是学校法律援助协会会员。已知参加学校法律援助协会的人数是既是中国法律援助网志愿者又参加学校法律援助协会人数的3倍,是三种组织均参加了的人数的6倍;既
最新回复
(
0
)