首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵.C为m×n矩阵. (1)计算PTDP,其中P=,(Ek为k阶单位矩阵); (2)利用(1)的结果判断矩阵B—CTA—1C是否为正定矩阵,并证明你的结论.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵.C为m×n矩阵. (1)计算PTDP,其中P=,(Ek为k阶单位矩阵); (2)利用(1)的结果判断矩阵B—CTA—1C是否为正定矩阵,并证明你的结论.
admin
2016-04-11
109
问题
设D=
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵.C为m×n矩阵.
(1)计算P
T
DP,其中P=
,(E
k
为k阶单位矩阵);
(2)利用(1)的结果判断矩阵B—C
T
A
—1
C是否为正定矩阵,并证明你的结论.
选项
答案
(1)P
T
DP=[*]。(2)矩阵B-C
T
A
-1
C是正定矩阵。证明:由(1)的结果知D合同于矩阵M=[*],又D为正定矩阵,所以M为正定矩阵.因M为对称矩阵,故B—C
T
A
-1
C为对称矩阵.由M正定,知对m维零向量x=(0,0,…,0)
T
及任意的n维非零向量y=(y
1
,y
2
,…,y
n
)
T
,有 [*] 故对称矩阵B—C
T
A
-1
C为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/5Vw4777K
0
考研数学一
相关试题推荐
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0,证明:
设f(x)为偶函数,且满足f’(x)+2f(x)-3∫0xf(t-x)dt=-3x+2,求f(x).
设f(x)在[0,1]上连续且单调减少,证明:当0<k<1时,∫0kf(x)dx≥k∫01f(x)dx.
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足________.
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1,证明:存在c∈(0,1)使得f(c)=1-2c;
一个容器的内侧是由x2+y2=1(y≤1/2)绕y轴旋转一周而成的曲面,长度单位为m,重力加速度为g(m/s2),水的密度为p(kg/m3)求容器的容积V
设函数f(u)可导,y=f(sinx)当自变量x在x=π/6处取得增量△x=,相应的函数增量△y,的线性主部为1,则f’(1/2)=().
设非负连续型随机变量X服从指数分布,证明对任意实数r和S,有P{X>r+s|X>s}=P{X>r}.
从5个数:1,2,3,4,5中任取3个数,再按从小到大排列,设X表示中间那个数,求X的概率分布.
设X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则
随机试题
按规定熟啤酒中不能检出大肠杆菌。
下列化合物中哪个在水中溶解度最大。()
简述货币流通规律。
根据《危险化学品重大危险源监督管理暂行规定》,重大危险源配备温度、压力、液位、流量、组分等信息的不间断采集和监测系统,以及可燃气体和有毒有害气体泄漏检测报警装置,并具备信息远传、连续记录、事故预警、信息储存等功能。记录的电子数据的保存时间不少于(
某商业建筑总高度26m,地下一层为地下汽车库、人防、设备用房和建筑面积为10000m2的地下商业街,按防烟分区设防排烟系统。下列关于防排烟系统中防火阀的设置要求中,说法正确的是()
苏联教育家马卡连柯说:“要尽量多地要求一个人,也要尽可能地尊重一个人。”这体现了()德育原则。
有关剥夺政治权利刑期及其计算,正确的说法是()。
《中华人民共和国合同法》第46条规定:当事人对合同的效力可以约定附期限。附生效期限的合同,自期限届至时生效。附终止期限的合同,自期限届满时失效。试运用民法原理分析该条法律规定(包括该条文所规定制度的概念、构成要件、法律效力和制度价值)。
下列事实中,构成无因管理之债的事实是()。
WhatisthesinglelargestcauseofsickleaveintheUK?Theanswerisnotthecommoncoldorflu,butbackpain.Backpainaff
最新回复
(
0
)