首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设,若方程组(2E+A)x=0存在非零解,求a的值,并求正交矩阵P,使P-1A2P=A.
设,若方程组(2E+A)x=0存在非零解,求a的值,并求正交矩阵P,使P-1A2P=A.
admin
2021-02-25
40
问题
设
,若方程组(2E+A)x=0存在非零解,求a的值,并求正交矩阵P,使P
-1
A
2
P=A.
选项
答案
由|2E+A|=0[*]9(a-6)=0[*]a=6. 由|λE-A|=(λ-7
2
)(λ+2)=0[*]λ
1
=λ
2
=7,λ
3
=-2. 再将λ
1
=λ
2
=7,λ
3
=-2分别代入(λE+A)x=0解得依次对应的一个特征向量为α
1
=(1,-2,0)
T
,α
2
=(1,0, -1)
T
,α
3
=(2,1,2)
T
.将α
1
,α
2
正交化β
1
=α
1
,[*],再单位化β
1
,β
2
,α
3
: [*] 令P=(p
1
,p
2
,p
3
),则p为正交矩阵,于是 [*]
解析
本题主要考查用正交变换将矩阵化成对角矩阵.先由齐次线性方程组有非零解的充分必要条件是其系数行列式为零,由此求出参数a的值,再由常规方法用正交矩阵将A
2
化为对角矩阵.
转载请注明原文地址:https://kaotiyun.com/show/5p84777K
0
考研数学二
相关试题推荐
计算二重积分其中D={(x,y)|x2+y2≤a2,常数a>0.
求不定积分
设3阶矩阵A=(α1,α2.α3)有3个不同的特征值,且α3=α1+2α2.若β=α1+α2+α3,求方程组Ax=β的通解.
设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
[2010年]设A=,存在正交矩阵Q使得QTAQ为对角矩阵,若Q的第1列为[1,2,1]T,求a,Q.
设x为三维单位列向量,E为三阶单位矩阵,则矩阵E—xxT的秩为__________。
积分
交换积分次序=_______
设x>0时,∫x2f(x)dx=arcsinx+c,F(x)是f(x)的原函数,满足F(1)=0,则F(x)=________________.
随机试题
下列药物中,肝病患者应慎用的是
用于各种诊断目的X线诊断专用装置,不包括
A.D=lgl0/IB.K=D1-D2C.K=γlgKXD.S=H/KE.R=1/2d光学对比度的计算式是
符合行政诉讼第一审普通程序的有()。
关于植物样方调查的正确说法有()。
五四运动是由旧民主主义革命转变为新民主主义革命的主要标志。()
社会保障关乎获得感,也等同于安全感。而放在当前的世界维度中,可以通过社会保障来__________一个国家的发展诚意;发达国家的良好福利往往能对优秀青年人才产生筑巢引凤的号召效应,而一些没有迈过“中等收入陷阱”的国家,其社会保障__________的,尤其
甲、乙两汽车从相距695公里的两地出发,相向而行,乙汽车比甲汽车迟2个小时出发,甲汽车每小时行驶55公里,若乙汽车出发后5小时与甲汽车相遇,则乙汽车每小时行驶().
在一个C源程序文件中所定义的全局变量,其作用域为()。
GreenhouseEffectⅠ.IntroductionGreenhouseEffect,thecapacityofcertaingasesintheatmospheretotrapheatemittedfr
最新回复
(
0
)