首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设,若方程组(2E+A)x=0存在非零解,求a的值,并求正交矩阵P,使P-1A2P=A.
设,若方程组(2E+A)x=0存在非零解,求a的值,并求正交矩阵P,使P-1A2P=A.
admin
2021-02-25
41
问题
设
,若方程组(2E+A)x=0存在非零解,求a的值,并求正交矩阵P,使P
-1
A
2
P=A.
选项
答案
由|2E+A|=0[*]9(a-6)=0[*]a=6. 由|λE-A|=(λ-7
2
)(λ+2)=0[*]λ
1
=λ
2
=7,λ
3
=-2. 再将λ
1
=λ
2
=7,λ
3
=-2分别代入(λE+A)x=0解得依次对应的一个特征向量为α
1
=(1,-2,0)
T
,α
2
=(1,0, -1)
T
,α
3
=(2,1,2)
T
.将α
1
,α
2
正交化β
1
=α
1
,[*],再单位化β
1
,β
2
,α
3
: [*] 令P=(p
1
,p
2
,p
3
),则p为正交矩阵,于是 [*]
解析
本题主要考查用正交变换将矩阵化成对角矩阵.先由齐次线性方程组有非零解的充分必要条件是其系数行列式为零,由此求出参数a的值,再由常规方法用正交矩阵将A
2
化为对角矩阵.
转载请注明原文地址:https://kaotiyun.com/show/5p84777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 C
心形线r=a(1+cosθ)(常数a>0)的全长为______.
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
设,已知线性方程组Ax=b存在2个不同的解.(1)求λ,a;(2)求方程组Ax=b的通解.
设函数S(x)=∫0x|cost|dt。(Ⅰ)当n为正整数,且nπ≤x<(n+1)π时,证明2n≤S(x)<2(n+1);(Ⅱ)求S(x)/x。
设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y1=2y(y≥1/2)与x2+y2=1(y≤1/2)连接而成。若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m,重力加速度为gm/s2,水的密度为103kg/m3
(2008年)设n元线性方程组Aχ=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求χ1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
设矩阵A=的特征方程有一个二重根,求a的值。并讨论A是否可相似对角化。
交换积分次序
随机试题
Oneofthemostimportantfeaturesthatdistinguishesreadingfromlisteningisthenatureoftheaudience.【C1】______thewriter
肿瘤流行病学的研究目的是
A.卡泊芬净B.两性霉素BC.氟康唑D.灰黄霉素E.特比萘芬多烯类抗真菌药()。
会计档案的定期保管期限不包括()。
下列事件不符合科学依据的是()。
(1)原因很简单,会做生意的人不会去关注和解决社会问题,而真正帮助弱势群体做社会服务的人又缺乏经商的观念、能力和技巧(2)在这个背景之下,香港开办社会企业的往往不是社区里的个人,而是成熟的社会服务机构(3)因此社会企业在香港就像是机构的附属一样,缺乏创
马王堆汉墓帛画描绘的主题思想是()。
资本的有机构成是()。
领导让你和小李共同举办晚会,但是小李在上次的晚会组织过程中犯了错误,领导对小李印象不佳,小李也不配合你的工作,你怎么做小李的工作?
Ifeelthatwemustrespectthispointofviewandaccepttheconvictionofthemanypeoplewhoholdit,becausethatishowthe
最新回复
(
0
)