首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(—1,2,—3)T都是A属于λ=6的特征向量,求矩阵A。
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(—1,2,—3)T都是A属于λ=6的特征向量,求矩阵A。
admin
2017-01-21
51
问题
设三阶实对称矩阵A的秩为2,λ
1
=λ
2
=6是A的二重特征值,若α
1
=(1,1,0)
T
,α
2
=(2,1,1)
T
,α
3
=(—1,2,—3)
T
都是A属于λ=6的特征向量,求矩阵A。
选项
答案
由r(A)=2知,|A|=0,所以λ=0是A的另一特征值。 因为λ
1
=λ
2
=6是实对称矩阵的二重特征值,故A属于λ=6的线性无关的特征向量有两个,因此α
1
,α
2
,α
3
必线性相关,显然α
1
,α
2
线性无关。 设矩阵A属于λ=0的特征向量α=(x
1
,x
2
,x
3
)
T
,由于实对称矩阵不同特征值的特征向量相互正交,故有 [*] 解得此方程组的基础解系a=(—1,1,1)
T
。 根据A(α
1
,α
2
,α)=(6α
1
,6α
2
,0)得 A=(6α
1
,6α
2
,0)(α
1
,α
2
,α)
—1
[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/62H4777K
0
考研数学三
相关试题推荐
二次型f(x1,x2,x3)=x12+4x22+3x32-4x1x2+2x1x3+8x2x3的秩等于()。
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是().
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为(I)X和Y是否独立?(Ⅱ)求两个部件的寿命都超过100小时的概率α.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是().
设A为2阶矩阵,α1,α2为线性无关的2维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为_______.
设A为2阶矩阵,α1,α2为线性无关的2维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________.
设数列{an},{bn}满足ean=ean一an(n=1,2,3,…),求证:若an>0,则bn>0;
设{xn}是数列.下列命题中不正确的是
设求y(n).(0).
随机试题
梅雨の時期は、気温________湿度も高い。
根据《建筑安装工程费用项目组成》(建标[2013]44号文),建筑施工现场工作人员的“工伤”期间领取的工资属于人工费中的()。
根据冯.诺依曼原理,计算机硬件的基本组成是()。
工资费用的分配就是按照工资用途,将其记入的有关账户包括()。
下列各项中,符合我国现行出口应税消费品的退(免)消费税政策的是()。
甲公司2010年发生下列各项交易或事项:(1)取得长期股权投资的现金股利200万元1(2)为购建固定资产支付专门借款利息60万元;(3)购买可供出售金融资产支付价款3000万元;(4)因固定资产毁损收取保险公司赔偿30万元;(5)以银行存款向税务
【2015广西】外铄论的代表人物是()。
甲某到乙某家串门,走时没有关街门,致使乙某家养的两只狗跑出咬伤过路人丙,此案()。
下列逻辑表达式中,能正确表示条件“x和y都是奇数”的是
MyfriendssayI’mtrusting.Sure,I’ma"whatyouseeiswhatyouget"kindofperson.So【C2】________Iexpectthesamekind
最新回复
(
0
)