首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(—1,2,—3)T都是A属于λ=6的特征向量,求矩阵A。
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(—1,2,—3)T都是A属于λ=6的特征向量,求矩阵A。
admin
2017-01-21
68
问题
设三阶实对称矩阵A的秩为2,λ
1
=λ
2
=6是A的二重特征值,若α
1
=(1,1,0)
T
,α
2
=(2,1,1)
T
,α
3
=(—1,2,—3)
T
都是A属于λ=6的特征向量,求矩阵A。
选项
答案
由r(A)=2知,|A|=0,所以λ=0是A的另一特征值。 因为λ
1
=λ
2
=6是实对称矩阵的二重特征值,故A属于λ=6的线性无关的特征向量有两个,因此α
1
,α
2
,α
3
必线性相关,显然α
1
,α
2
线性无关。 设矩阵A属于λ=0的特征向量α=(x
1
,x
2
,x
3
)
T
,由于实对称矩阵不同特征值的特征向量相互正交,故有 [*] 解得此方程组的基础解系a=(—1,1,1)
T
。 根据A(α
1
,α
2
,α)=(6α
1
,6α
2
,0)得 A=(6α
1
,6α
2
,0)(α
1
,α
2
,α)
—1
[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/62H4777K
0
考研数学三
相关试题推荐
设函数y=f(x)由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程是__________.
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
设函数D={(x.y)丨x2+y2≤4,x≥0,y≥0},f(x)为D上的正值连续函数,a,b为常数,求
某企业为生产甲、乙两种型号的产品投入的同定成本为10000(万元).设该企业生产甲、乙两种产品的产量分别为x(件)和y(件),且这两种产品的边际成本分别为20+x/2(万元/件)与6+y(万元/件).求生产甲、乙两种产品的总成本函数C(x,y)(万元)
设X1,X2为来自正态总体N(μ,σ2)的样本,则X1+X2与X1-X2必().
设A为n阶实对称矩阵,秩﹙A﹚=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)=(I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)的
四名乒乓球运动员——1,2,3,4参加单打比赛,在第一轮中,1与2比赛,3与4比赛.然后第一轮中的两名胜者相互比赛决出冠亚军,两名败者也相互比赛决出第三名和第四名.于是比赛的一种最终可能结果可以记作1324(表示1胜2,3胜4,然后1胜3,2胜4).设
设函数f(x)具有连续的一阶导数,且满足(x2-t2)f’(t)dt+x2,求f(x)的表达式.
设f(x,y)在(x0,y0)某邻域有定义,且满足:f(x,y)=f(x0,y0)+n(x一x0)+b(y—y0)+。(p)(p→o),其中a,b为常数,,则
设a1=1,当n≥1时,an+1=,证明:数列{an}收敛并求其极限.
随机试题
管道的严密性试验介质可用天然气或氢气。
近年来,我国法院不断完善诉讼程序制度,加强司法政务管理,努力提高司法效率,建立公正、高效的审判工作机制。这些审判工作机制包括哪些?()
量值的传递指的是把一个物理量单位提高各级基准、标准及相应的辅助手段准确地传递到日常工作中所使用的(),以确保量值统一的过程。
在环比增长速度时间序列中,由于各期的基数不同,运用速度指标反映现象增长的快慢时往往需要结合()这一指标分析才能得出正确结论。
从个体身心发展动因角度来看,“树大自然直”的说法反映了()的观点。
西方许多企业和政府组织结构形式已经开始向扁平化方向发展。所谓组织扁平化,就是指通过减少行政管理层次,裁减冗余人员,从而建立一种扁平化组织结构。扁平化结构具有的优势有()。
为了解城镇棚户区改造情况,回家统计局社情民意调查中心2015年选取20个省(区、市)城镇棚户区的10100位居民进行了调查。调查显示.对于棚户区配套公共服务设施改造情况,受访棚户区居民中23.4%表示“满意”,40.2%表示“基本满意”。具体调查结果见下表
政府宏观经济调控就是国家通过计划管理经济。()
斯巴达教育的基本特点是强调()
设随机变量X在区间[一1,1]上服从均匀分布,随机变量(Ⅰ)Y=,试分别求出DY与Cov(X,Y).
最新回复
(
0
)