首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本,证明: 都是参数θ的无偏估计量,试比较其有效性.
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本,证明: 都是参数θ的无偏估计量,试比较其有效性.
admin
2016-10-24
49
问题
设总体X在区间(0,θ)内服从均匀分布,X
1
,X
2
,X
3
是来自总体的简单随机样本,证明:
都是参数θ的无偏估计量,试比较其有效性.
选项
答案
因为总体X在区间(0,θ)内服从均匀分布,所以分布函数为 [*] F
U
(u)=P(U≤u)一P{max(X
1
,X
2
,X
3
)≤u}=P(X
1
≤u,X
2
≤u,X
3
≤υ) =P(X
1
≤u)P(X
2
≤u)P(X
3
≤u)= [*] F
V
(υ)=P(V≤υ)=P{min(X
1
,X
2
,X
3
)≤υ}=1一P(min(X
1
,X
2
,X
3
)>υ) =1一P(X
1
>υ,X
2
>υX
3
>υ)=1一P(X
1
>υ)P(X
2
>υ)P(X
3
>υ) =1一[1一P(X
1
≤υ)][1一P(X
2
≤υ)][1一P(X
3
≤υ)] [*] 则U,V的密度函数分别为f
U
(x)= [*] 所以[*] 都是参数θ的无偏估计量, D(U)=E(U
2
)一[E(U)]
2
=∫
0
θ
x
2
×[*] D(V)=E(V
2
)一[E(V)]
2
=∫
0
θ
x
2
×[*] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/6sH4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上可积,又,证明φ(x)是[a,b]上的连续函数.
下列函数在哪些点处间断,说明这些间断点的类型,如果是可去间断点,则补充定义或重新定义函数在该点的值而使之连续:
设空间区域Ω={(x,y,z)|x2+y2+z2≤a2},Ω1={(x,y,z)|x2+y2+z2≤a2,x≥0,y≥0,z≥0},则下列等式不成立的是__________.
设是两条异面直线;(1)求l1与l2的公垂线方程;(2)l1与l2的距离.
证明:函数f(x,y)=(1+ey)cosx-yey有无穷多个极大值点,但无极小值点.
求密度为常数μ的均匀半球壳的质点坐标及对于z轴的转动惯量.
设有一物质曲线Γ,在点(x,y,z)处它的线密度为μ(x,y,z),用第一类曲线积分分别表示:(1)该物质曲线关于x轴与y轴的转动惯量;(2)该物质曲线对位于线外点Mo(xo,yo,zo)处的单位质点的引力.
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为(I)X和Y是否独立?(Ⅱ)求两个部件的寿命都超过100小时的概率α.
设齐次线性方程组其中a≠O,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多组解?存有无穷多组解时,求出全部解,并用基础解系表示全部解.
随机试题
下列疾病的口腔黏膜基本损害为A、溃疡B、大疱C、白色斑块D、白色网状条纹E、红色萎缩天疱疮
描述上颌骨血供特点及临床意义错误的是
A.山药丸B.木瓜丸C.六味地黄丸D.苏合香丸E.牛黄解毒丸内含乌头类药物的中成药是()。
罗某犯放火罪应被判处10年有期徒刑,此时人民法院还可以适用的附加刑是()。
下列关于湿陷起始压力的叙述中哪些选项是正确的?
基金经理任职应当具备的条件不包括()。
下列行为构成不当得利的是()。
设二维随机变量(X,Y)的联合概率密度为求:(Ⅰ)系数A;(Ⅱ)(X,Y)的联合分布函数;(Ⅲ)边缘概率密度;(Ⅳ)(X,Y)落在区域R:x>0,y>0,2x+3y<6内的概率。
失效回复测试(RecoveryTesting),其目标是______。A)测试各种资源在超负荷的情况下的运行情况B)检测系统可以处理目标内确定的数据容量C)度量系统的性能和预先定义的目标有多大差距D)验证系统从软件或者硬件失效中恢复的能力
以下关于两段锁协议的原理叙述错误的是()。
最新回复
(
0
)