首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)的联合概率密度为 求: (Ⅰ)系数A; (Ⅱ)(X,Y)的联合分布函数; (Ⅲ)边缘概率密度; (Ⅳ)(X,Y)落在区域R:x>0,y>0,2x +3y<6内的概率。
设二维随机变量(X,Y)的联合概率密度为 求: (Ⅰ)系数A; (Ⅱ)(X,Y)的联合分布函数; (Ⅲ)边缘概率密度; (Ⅳ)(X,Y)落在区域R:x>0,y>0,2x +3y<6内的概率。
admin
2017-01-21
68
问题
设二维随机变量(X,Y)的联合概率密度为
求:
(Ⅰ)系数A;
(Ⅱ)(X,Y)的联合分布函数;
(Ⅲ)边缘概率密度;
(Ⅳ)(X,Y)落在区域R:x>0,y>0,2x +3y<6内的概率。
选项
答案
(Ⅰ)根据分布函数的性质 ∫
—∞
+∞
∫
—∞
+∞
f(x,y)dxdy=∫
0
+∞
∫
0
+∞
Ae
一(2x+3y)
dxdy=A.[*],解得A=6。 (Ⅱ)将A=6代入得(X,Y)的联合概率密度为 [*] 所以当x>0,y>0时, F(x,y)=∫
0
+∞
∫
0
+∞
Ae
一(2x+3y)
dxdy=6∫
0
x
e
—2x
dx∫
0
y
e
—3y
dy=(1—e
—2x
)(1—e
—3y
), 而当x和y取其它值时,F(x,y)=0。 综上所述,可得联合概率分布函数为 [*] (Ⅲ)当x>0时,X的边缘密度为 f
X
(x) =6e
—(2x+3y)
dy=2e
—2x
, 当x≤0时,f
X
(x)=0。因此X的边缘概率密度为 [*] 同理可得Y的边缘概率密度函数为 [*] (Ⅳ)根据公式 [*] 已知R:x>0,y>0,2x+3y<6,将其转化为二次积分,可表示为 [*]e
—3y
dy=2∫
0
3
(e
—2x
-
—6
)dx=1—7e
—6
≈0.983。
解析
转载请注明原文地址:https://kaotiyun.com/show/whH4777K
0
考研数学三
相关试题推荐
[*]
设某产品的需求函数为Q=Q(P),收益函数为R=PQ,其中P为产品价格,Q为需求量(产品的产量),Q(P)是单调减函数,如果当价格为Po,对应产量为Qo时,边际收
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩r(A)≤2;
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
假设随机变量U,在区间[-2,2]上服从均匀分布,随机变量X和Y的联合概率分布;
二次型f(x1,x2,x3)=x12+x22+x12-4x2x3的正惯性指数为().
设二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3-2x2x3.求二次型f的矩阵的所有特征值;
假设曲线l1:y=1-x2(0≤x≤1)与x轴,y轴所围成区域被曲线l2:y=ax2分为面积相等的两部分,其中a是大于零的常数,试确定口的值.
设总体X服从正态分布N(μ1,σ2),总体Y服从正态分布N(μ2,σ2),X1,X2,…,Xn和Y1,Y2…,Yn分别是来自X和Y的简单随机样本,则=_________.
计算ln(1+x2+y2)dxdy,其中D:x2+y2≤1.
随机试题
“永州八记”写于柳宗元被贬为________时,其首篇是《________》。
以下观点何项是《诸病源候论》提出的
男性,30岁。患出血坏死性胰腺炎2周,经治疗,高热不退,持续腹痛。体检:上腹扪及一块物。血淀粉酶1000U/L(Somogyi法),血白细胞14×109/L,中性粒细胞0.85(85%)。最可能的原因是
病理切片中见到绒毛结构的疾病不是流产后不规则流血,子宫内容物组织学检查为成团的滋养细胞,未见绒毛结构,诊断为
目前,各银行还根据个人需求提供个性化的还款方式及还款服务,较为常见的特色还款方式包括()。
日用小杂品的配送在现实生活中,往往都是采用()方法来向用户供货和发送货物的。
Sociologists(社会学家)tellusthatweareheadingforasocietyleisure.Thetrendisunmistakable.Onehundredyearsago,theypo
A、 B、 C、 D、 C确认图片中有孩子们和一位女士在公交车旁排成一队,同时公交车里面的男士正在看着他们。
A、Newspaperoflowprice.B、Newspaperwithattractiveheadline.C、Newspaperwithsportspage.D、Newspaperwithbusinesssection.
A、Theinterpersonalrelationship.B、Thehighpressure.C、Theservantsystem.D、Therapidprogress.B原文提到美国人对时间又爱又十艮,后面具体解释原因,答案依
最新回复
(
0
)