首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3为3维向量空间R3的一个基,令β1=2α1+2kα3,β2=2α2,β3=2α1+(k+1)α3. 当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,并求出所有的ξ.
设向量组α1,α2,α3为3维向量空间R3的一个基,令β1=2α1+2kα3,β2=2α2,β3=2α1+(k+1)α3. 当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,并求出所有的ξ.
admin
2021-02-25
91
问题
设向量组α
1
,α
2
,α
3
为3维向量空间R
3
的一个基,令β
1
=2α
1
+2kα
3
,β
2
=2α
2
,β
3
=2α
1
+(k+1)α
3
.
当k为何值时,存在非零向量ξ在基α
1
,α
2
,α
3
与基β
1
,β
2
,β
3
下的坐标相同,并求出所有的ξ.
选项
答案
设[*],则P为从基α
1
,α
2
,α
3
到基β
1
,β
2
,β
3
的过渡矩阵.又设ξ在基α
1
,α
2
,α
3
下的坐标为x=(x
1
,x
2
,x
3
)
T
,则ξ在基β
1
,β
2
,β
3
下的坐标为P
-1
x.由已知有x=P
-1
x,从而px=x.即(P-E)x=0. 又由于ξ≠0,所以其坐标向量x≠0,即齐次线性方程组(P-E)x=0应有非零解,于是[*],因此当k=0时,齐次线性方程组的非零解为[*],其中c为任意常数.从而ξ=-cα
1
+0α
2
+cα
3
,c为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/7Y84777K
0
考研数学二
相关试题推荐
已知线性方程组(1)a、b为何值时,方程组有解?(2)当方程组有解时,求出方程组的导出组的一个基础解系.(3)当方程组有解时,求出方程组的全部解.
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明:a4不能由a1,a2,a3线性表示。
设f(x)=,证明曲线y=f(x)在区间(ln2,+∞)上与x轴围成的区域有面积存在,并求此面积。
证明
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程其中α=[1,1,一1]T,A*为A的伴随矩阵,求二次型XTBX的表达式.
n阶矩阵,求A的特征值和特征向量。
已知A是n阶对称矩阵,B是n阶反对称矩阵,证明A—B2是对称矩阵。
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
随机试题
A、Thebirdwasdead.B、Thebirdwasalive.C、It’shardtoanswerthequestion.D、Hefoundoutthechildren’strick.D
病理性中性粒细胞增多常见于以下哪些疾病
甲、乙双方因工程款纠纷引发诉讼,案件经过两级法院审理终结。由于对二审判决结果不服,甲欲向上一级人民法院申请再审。甲提出的下列事实和理由不能得到法院准许的有()。
根据《建设工程质量管理条例》的规定,设计单位应当参与建设工程()分析,并提出相应的技术处理方案。
注册会计师可以利用检查文件资料的程序来进行控制测试和实质性程序,但在不同种类的测试中,检查的对象是不同的。( )分析程序具有很强的预期性,它不仅可以帮助注册会计师发现财务报表中的已发生的异常变化,或者预期发生而未发生的变化,还可以帮助注册会计师发现财
对于一般中暑旅游者,可将其置于阴凉通风处、能时让其饮用含盐饮料、解开衣领,放松裤带。()
随着商品流通,贸易往来、人际交流的越来越______,远古时代那种依靠步行的交通方式以及手提、肩扛、头顶的运输方式已很难适应社会发展的需要,于是交通运输设施的兴建与运输工具的制造便_______。
1/2,1/3,3/10,2/7,5/18,()
我国现行宪法规定,全国人大常委会的组成人员中,应当有适当名额的()。
A、Hecan’texplaintheinstructionsclearly.B、Hespeakstoofast.C、Hedoesn’tunderstandtheinstructionsclearly.D、Heisde
最新回复
(
0
)