首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3为3维向量空间R3的一个基,令β1=2α1+2kα3,β2=2α2,β3=2α1+(k+1)α3. 当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,并求出所有的ξ.
设向量组α1,α2,α3为3维向量空间R3的一个基,令β1=2α1+2kα3,β2=2α2,β3=2α1+(k+1)α3. 当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,并求出所有的ξ.
admin
2021-02-25
41
问题
设向量组α
1
,α
2
,α
3
为3维向量空间R
3
的一个基,令β
1
=2α
1
+2kα
3
,β
2
=2α
2
,β
3
=2α
1
+(k+1)α
3
.
当k为何值时,存在非零向量ξ在基α
1
,α
2
,α
3
与基β
1
,β
2
,β
3
下的坐标相同,并求出所有的ξ.
选项
答案
设[*],则P为从基α
1
,α
2
,α
3
到基β
1
,β
2
,β
3
的过渡矩阵.又设ξ在基α
1
,α
2
,α
3
下的坐标为x=(x
1
,x
2
,x
3
)
T
,则ξ在基β
1
,β
2
,β
3
下的坐标为P
-1
x.由已知有x=P
-1
x,从而px=x.即(P-E)x=0. 又由于ξ≠0,所以其坐标向量x≠0,即齐次线性方程组(P-E)x=0应有非零解,于是[*],因此当k=0时,齐次线性方程组的非零解为[*],其中c为任意常数.从而ξ=-cα
1
+0α
2
+cα
3
,c为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/7Y84777K
0
考研数学二
相关试题推荐
设f(x)在[0,+∞)内可导且f(0)=1,f’(x)<f(x)(x>0).证明:f(x)<ex(x>0).
设f(x)=,证明曲线y=f(x)在区间(ln2,+∞)上与x轴围成的区域有面积存在,并求此面积。
设函数f(μ)在(0,+∞)内具有二阶导数,且z=满足等式=0。验证f’’(μ)+=0;
证明
已知A是n阶对称矩阵,B是n阶反对称矩阵,证明A—B2是对称矩阵。
设A是n阶矩阵,证明:A=O的充要条件是AAT=O.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.(1)求A的其他特征值与特征向量;(2)求A.
用配方法化二次型f(χ1,χ2,χ3)=χ12+2χ1χ2+2χ1χ3-4χ32为标准形.
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
随机试题
某项固定资产的原值为120000元,预计使用年限为5年,预计净残值为12000元,则按年数总和法计算的第4年的折旧额为()。
党对政法工作的领导主要是()。
从水溶液中萃取皂苷常选用的溶剂是
下列关于去甲肾上腺素、肾上腺素、异丙肾上腺素的作用错误的是
根据丙与丁之间的租赁合同,丁最长可租住该房屋多少年?对丁与丙及甲乙之间的权利义务关系,以下说法正确的有?
宏观绩效衡量主要是考察整个宏观经济对基金业绩的影响。( )
在保守型筹资政策下,下列结论中,成立的是()。
下列行为中,属于欺诈行为的有()。
李某,男,25岁,甲市乙乡人,在丙市某企业打工时与丁市城镇居民陈某结婚。两人此前均未生育,婚后不久陈某怀孕。根据《流动人口计划生育工作条例》,李某夫妇办理生育服务登记时,应当提供的证明材料包括()。
求不定积分
最新回复
(
0
)