首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x=2的某邻域内可导,且f'(x)=ef(x),f(2)=3,则f(n)(2)=_________。
设f(x)在x=2的某邻域内可导,且f'(x)=ef(x),f(2)=3,则f(n)(2)=_________。
admin
2019-01-25
22
问题
设f(x)在x=2的某邻域内可导,且f'(x)=e
f(x)
,f(2)=3,则f
(n)
(2)=_________。
选项
答案
(n-1)!e
3n
解析
本题考查数学归纳法求高阶导数。首先通过多次求导找出f
(n)
(x)的表达式,再将x=2代入最终表达式得出结果。
对f'(x)=e
f(x)
两端求导可得f"(x)=e
f(x)
·f'(x)=e
2f(x)
,对上式两端继续求导可得
,对上式两端继续求导可得f
(4)
(x)=2e
3f(x)
·3f'(x)=6e
4f(x)
,根据数学归纳法可知,f
(n)
(x)=(n-1)!e
nf(x)
,结合f(2)=3可知,f
(n)
(2)=(n-1)!e
nf(2)
=(n-1)!e
3n
。
转载请注明原文地址:https://kaotiyun.com/show/7hP4777K
0
考研数学三
相关试题推荐
已知关系式f’(一x)=x[f’(x)一1],试求函数f(x)的表达式.
设非齐次方程组(I)有解,且系数矩阵A的秩r(A)=r<n(b1,b2,…,bn不全为零).证明:方程组(I)的所有解向量中线性无关的最大个数恰为n一r+1个.
设X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值,C为任意常数,则().
设随机变量X的密度函数为Y=X2一2X一5,试求Y的密度函数和Cov(X,Y).
已知在微分方程y’+p(x)y=f(x)中,p(x)≥c>0,且f(x)=0.试证:微分方程的通解当x→+∞时都趋于零.
设f(t)为连续函数,常数a>0,区域D={(x,y)||x|≤},证明:f(x—y)dxdy=∫—aaf(t)(a一|t|)dt.
设级数都发散,则().
设f(x)在x0的邻域内三阶连续可导,且f'(x0)=f"(x0)=0,f"'(x0)>0,则下列结论正确的是().
随机试题
集整管理模式不是一成不变的,相反,它是永远在变化进取的,因为它是有机的,生就具有较大的包容性和可扩展性,具有强大生命力并不断长大发展着的管理模式。()
面部危险三角区疖的危险性在于()
某患者,女,30岁,症见经血非时而下,量多如崩,色淡质稀,神疲体倦,气短懒言,不思饮食,四肢不温,舌淡胖,苔薄白,脉缓弱。请回答下列问题:治疗方剂应选用
区域规划是按()对水资源开发利用和防治水害等进行总体部署。
甲公司从事水泥生产作业,其在外地设有一处分公司乙,并且已取得营业执照;2011年8月,因生产规模扩大,乙公司决定新招一批生产工人。随后乙公司在当地招聘了包括小王和小李在内的15名工人,9月1日开始工作。乙公司与应聘个人口头约定了工作内容和工资数额。10月初
根据合同法律制度的规定,下列有关保证责任诉讼时效的表述,正确的有()。
OnaclearmorninginearlyMay,BrianLathrop,aseniorengineerforVolkswagen’sElectronicsResearchLaboratory,wasinthed
计算机采用的主机电子器件的发展顺序是___________。
我们既要绿水青山,也要金山银山。宁要绿水青山,不要金山银山。......我们绝不能以牺牲生态环境为代价换取经济的一时发展。
Isitdifficultforyoutogetupinthemorning?Yes?ThenHiroyukiofJapanhasaspecialbedforyou.Hiroyuki’sbedwillget
最新回复
(
0
)