首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设α1,α2,…,αn为n个n维线性无关的向量,且β与α1,α2,…,αn正交.证明:β=0; (Ⅱ)设α1,α2,…,αn-1为n一1个n维线性无关的向量,α1,α2,…,αn-1与非零向量β1,β2正交,证明:β1,β2线性相关.
(Ⅰ)设α1,α2,…,αn为n个n维线性无关的向量,且β与α1,α2,…,αn正交.证明:β=0; (Ⅱ)设α1,α2,…,αn-1为n一1个n维线性无关的向量,α1,α2,…,αn-1与非零向量β1,β2正交,证明:β1,β2线性相关.
admin
2014-11-26
80
问题
(Ⅰ)设α
1
,α
2
,…,α
n
为n个n维线性无关的向量,且β与α
1
,α
2
,…,α
n
正交.证明:β=0; (Ⅱ)设α
1
,α
2
,…,α
n-1
为n一1个n维线性无关的向量,α
1
,α
2
,…,α
n-1
与非零向量β
1
,β
2
正交,证明:β
1
,β
2
线性相关.
选项
答案
(Ⅰ)令[*] 因为α
1
,α
2
,…,α
n
线性无关,所以r(A)=n.又因为α
1
,α
2
,…,α
n
与β正交,所以Aβ=0,从而r(A)+r(β)≤n,注意到r(A)=n,于是r(β)=0,即β为零向量. (Ⅱ)方法一:令[*] B=(β
1
,β
2
),因为α
1
,α
2
,…,α
n-1
线性无关,所以r(A)=n一1.又因为α
1
,α
2
,…,α
n-1
与β
1
,β
2
正交,所以AB=0,从而r(A)+r(B)≤n,注意到r(A)=n一1,所以r(B)≤1,即β
1
,β
2
线性相关. 方法二:令[*] 因为α
1
,α
2
,…,α
n-1
线性无关,所以r(A)=n一1.因为α
1
,α
2
,…,α
n-1
与β
1
,β
2
正交,所以β
1
,β
2
为方程组AX=0的两个解,而方程组AX=0的基础解系含有一个线性无关的解向量,所以β
1
,β
2
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/7l54777K
0
考研数学一
相关试题推荐
设向量组,若三条直线相交于一点,则向量α1,α2,α3间应有什么样的线性关系?说明理由.
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1=2α1,Aα2=α1+2α2,Aα3=α2+2α3.证明α1,α2,α3线性无关;
设线性方程组问λ为何值时,方程组有解,有解时,求出所有的解.
利用极坐标计算二重积分ln(1+x2+y2)dxdy,其中D是由圆周x2+y2=1及坐标轴所围的位于第一象限的闭区域.
设平面区域D由x=0,y=0,x+y=,x+y=1围成,若I1=,则I1,I2,I3的大小顺序为().
设函数z=f(u),方程u=ψ(u)+∫yxP(t)dt确定u是x,y的函数,其中f(u),ψ(u)可微,P(t),ψ’(u)连续,且ψ’(u)≠1.求
求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=1=1的解.
求微分方程yy”一(y’)2=0满足初值条件y|x=0=1,y’|x=0=的特解.
若D是由直线x=—2,y=0,y=2以及曲线所围成的平面区域,计算
一辆机场交通车载有25名乘客途经9个站,每位乘客都等可能在这9个站中任意一站下车(且不受其他乘客下车与否的影响),交通车只在有乘客下车时才停车,令随机变量Yi表示在第i站下车的乘客数,i=1,2,…,Xi在有乘客下车时取值为1,否则取值为0.求:(Yi
随机试题
不用于皮肤消毒的药物是
患者,男性。29岁。近3天因生气后出现胃脘胀痛,攻窜不定,嗳气频作,大便不畅,舌苔薄白,脉弦。治宜选用
A.泽泻B.滑石C.茵陈D.萆薢E.地肤子具有利湿去浊,祛风除痹功效的药物是
高等院校、科研单位的城市规划编制机构中专职从事城市规划编制的人员不得低于技术人员总数的()。
设备采购方以()为代价。
采用绝对估值手段,不同行业的股票通常具有相似的水平;而采用相对估值手段时,不同行业股票的股价通常具有较大的差异。( )
某企业每年需某种物资500吨,已知每次订购成本200元,每吨年储存费用5元,则该企业的经济订货批量应为()吨。
有企业员工说:“板着面孔训人,我们不怕;不联系实际讲大道理,我们不听;说一套做一套,我们不服;自己做好了的事再要求我们做,我们不得不服”。正确理解这句话意思的有()。
人们偶然看到天上的朵朵白云会下意识地脱口说出它像棉絮、小山等,这种心理现象是()。
下列行为中,属于民事法律行为的是()(2010年一法专一第20题)
最新回复
(
0
)