首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)具有2阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上
设函数f(x)具有2阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上
admin
2019-03-11
48
问题
设函数f(x)具有2阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上
选项
A、当f
’
(x)≥0时,f(x)≥g(x)
B、当f
’
(x)≥0时,f(x)≤g(x)
C、当f
’’
(x)≥0时,f(x)≥g(x)
D、当f
’’
(x)≥0时,f(x)≤g(x)
答案
D
解析
【分析一】 由g(x)的表达式可知,g(0)=f(0),g(1)=f(1).
即f(x)与g(x)在区间[0,1]的端点函数值相等.
g(x)=f(0)+[f(1)-(0)]x是一条直线,斜率k=f(1)-f(0).
当f
’
(x)≥0时,说明f(x)单调不减,无法判定f(x)与g(x)的大小.
当f
’’
≥0时,f(x)在区间[0,1]上是上凹的,g(x)是连接f(x)两个端点的弦,故g(x)≥f(x).
正确选项为(D).
【分析二】令ω(x):f(x)-g(x)==>ω(0)=f(0)-f(0)=0,ω(1)=f(1)-f(1)=0
在[0,1]上,当f
’’
(x)≥0时,ω
’’
(x)=f
’’
(x)-g
’’
(x)=f
’’
(x)≥0==>ω(x)≤0,即f(x)≤g(x).选(D).
转载请注明原文地址:https://kaotiyun.com/show/7tP4777K
0
考研数学三
相关试题推荐
求常数a,使得向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但是β1,β2,β3不可用α1,α2,α3线性表示.
给定向量组(I)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+b)T,β3=(2,1,a+4)T.当a为何值时(I)和(Ⅱ)等价?a为何值时(I)和(Ⅱ)不等价?
考察级数,p为常数.(Ⅰ)证明:(n=2,3,4,…);(Ⅱ)证明:级数anp当p>2时收敛,当p≤2时发散.
设曲线y=bx一x2与x轴所围平面图形被曲线y=ax2(a>0)分成面积相等的两部分,求a的值.
(Ⅰ)已知f(x)=,在(一∞,+∞)存在原函数,求常数A以及f(x)的原函数;(Ⅱ)设|y|<1,求F(y)=∫—11|x一y|exdx.
求函数y=(x∈(0,+∞))的单调区间与极值点,凹凸区间与拐点及渐近线.
设有四个编号分别为1,2,3,4的盒子和三只球,现将每个球随机地放人四个盒子,记X为至少有一只球的盒子的最小号码.若当X=k时,随机变量Y在[0,k]上服从均匀分布,k=1,2,3,4,求P{y≤2}.
已知随机变量X与Y相互独立且都服从参数为的0-1分布,即P{X=0}=P{X=1}=,定义随机变量Z=求Z的分布;(X,Z)的联合分布;并问X与Z是否独立.
设方阵A满足A2一A一2E=O,并且A及A+2层都是可逆矩阵,则(A+2E)—1=________。
设方阵A1与B1合同,A2与B2合同,证明:合同。
随机试题
Itisplausibletoregardacollectionoflettersspanningyouthandoldageas(i)________ofautobiography:theprocessionofc
调整蜗轮铣削吃刀量时,应以()为切深参数起点。
企业在生产经营过程中要确立环境保护意识,从产品的设计、生产、营销、废弃物的处理方式,到产品消费过程中,都要突出强调环保理念和可持续发展,这是指【】
下列哪种疾病不由沙眼衣原体引起
对浅表和深部真菌感染均有较强作用的药物是
与胃痛关系密切的脏腑是
法律文化
期货交易涉及商品实物交割的,期货交易所还应当发布()。
【2013年山东事业单位.多选】下列属于有指导发现学习的是()。
阅读下列说明,针对项目的启动、计划制订和执行过程中存在的部分问题,根据要求回答问题1~问题3。[说明]2009年3月,系统集成商PH公司承担了某事业单位电子政务二期工程,合同额为650万元,全部工期预计5个月。该项目由PH公司总经理庞总主管
最新回复
(
0
)