首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:f(x,y)=Ax2+2Bxy+Cy2在约束条件g(x,y)=下有最大值和最小值,且它们是方程k2一(Aa2+Cb2)k+(AC—B2)a2b2=0的根.
证明:f(x,y)=Ax2+2Bxy+Cy2在约束条件g(x,y)=下有最大值和最小值,且它们是方程k2一(Aa2+Cb2)k+(AC—B2)a2b2=0的根.
admin
2018-09-20
89
问题
证明:f(x,y)=Ax
2
+2Bxy+Cy
2
在约束条件g(x,y)=
下有最大值和最小值,且它们是方程k
2
一(Aa
2
+Cb
2
)k+(AC—B
2
)a
2
b
2
=0的根.
选项
答案
因为f(x,y)在全平面连续,[*]为有界闭区域,故f(x,y)在此约束条件下必有最大值和最小值. 设(x
1
,y
1
),(x
2
,y
2
)分别为最大值点和最小值点,令 L(x,y,λ)=Ax
2
+2Bxy+Cy
2
+[*] 则(x
1
,y
1
),(x
2
,y
2
)应满足方程 [*] 记相应λ为λ
1
,λ
2
,则(x
1
,y
1
,λ
1
)满足 [*] 解得λ
1
=Ax
1
2
+2Bx
1
y
1
+Cy
1
2
.同理λ
2
=Ax
2
2
+2Bx
2
y
2
+Cy
2
2
即λ
1
,λ
2
是f(x,y)在椭圆[*]上的最大值和最小值. 又方程组①和②有非零解,系数行列式为0,即 [*] 化简得 λ
2
一(Aa
2
+Cb
2
)λ+(AC—B
2
)a
2
b
2
=0, 所以λ
1
,λ
2
是上述方程(即题目所给方程)的根.
解析
转载请注明原文地址:https://kaotiyun.com/show/7xW4777K
0
考研数学三
相关试题推荐
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置,证明:(Ⅰ)秩r(A)≤2;(Ⅱ)若α,β线性相关,则秩r(A)<2.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α满足Aα3=α2+α3,证明α1,α2,α3线性无关.
求函数F(x)=(0≤x≤1)的凹凸区间.
设f(x)=(I)求f’(x);(Ⅱ)证明:x=0是f(x)的极大值点;(Ⅲ)令,考察f’(xn)是正的还是负的,n为非零整数;(Ⅳ)证明:对,f(x)在(-δ,0]上不单调上升,在[0,δ]上不单调下降.
设A是3阶矩阵,且有3个互相正交的特征向量,证明A是对称矩阵.
已知A=能对角化,求An.
设函数f(x)在[a,b]上连续,在(a,b)内可导,且.求证:在(a,b)内至少存在一点ξ,使f’(ξ)=0.
设X和Y是相互独立的随机变量,其概率密度分别为其中λ>0,μ>0是常数,引入随机变量求E(Z)和D(Z).
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设随机事件A与B互不相容,0<P(A)<1,则下列结论中一定成立的是
随机试题
在甲国登记的法人H,其章程中规定的住所地在乙国,其经常居所地在丙国。依我国《涉外民事关系法律适用法》,关于H公司的民事权利能力应适用何国法律?()
企业应当自月份或者季度终了之日起()日内,向税务机关报送预缴企业所得税纳税申报表,预缴税款。
总分类账簿一般采用()。
企业财务成果的具体表现为()。
根据我国《外汇管理条例》,下列关于单位经常项目外汇账户的表述,正确的有()。
甲公司2×17年3月份购置了一处生产用厂房,预计使用寿命35年,因此,该公司2×17年3月31日发布公告称:经公司董事会审议通过《关于公司固定资产折旧年限会计估计变更的议案》,决定调整公司房屋建筑物的折旧年限,从原定的20年~30年调整为25年~40年。不
蚩尤
"Youneedanapartmentaloneevenifit’soveragarage,"declaredHelenGurleyBrowninher1962bestseller"SexandtheSingle
Theyear2010beganwithaherdofmanufacturerschasingAmazon’sKindle.Itendswithsomeofthesamecompaniesinpursuitof
Survivorsoftheaccident______horriblyformburnsandtherespiratoryproblem.
最新回复
(
0
)