首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:f(x,y)=Ax2+2Bxy+Cy2在约束条件g(x,y)=下有最大值和最小值,且它们是方程k2一(Aa2+Cb2)k+(AC—B2)a2b2=0的根.
证明:f(x,y)=Ax2+2Bxy+Cy2在约束条件g(x,y)=下有最大值和最小值,且它们是方程k2一(Aa2+Cb2)k+(AC—B2)a2b2=0的根.
admin
2018-09-20
36
问题
证明:f(x,y)=Ax
2
+2Bxy+Cy
2
在约束条件g(x,y)=
下有最大值和最小值,且它们是方程k
2
一(Aa
2
+Cb
2
)k+(AC—B
2
)a
2
b
2
=0的根.
选项
答案
因为f(x,y)在全平面连续,[*]为有界闭区域,故f(x,y)在此约束条件下必有最大值和最小值. 设(x
1
,y
1
),(x
2
,y
2
)分别为最大值点和最小值点,令 L(x,y,λ)=Ax
2
+2Bxy+Cy
2
+[*] 则(x
1
,y
1
),(x
2
,y
2
)应满足方程 [*] 记相应λ为λ
1
,λ
2
,则(x
1
,y
1
,λ
1
)满足 [*] 解得λ
1
=Ax
1
2
+2Bx
1
y
1
+Cy
1
2
.同理λ
2
=Ax
2
2
+2Bx
2
y
2
+Cy
2
2
即λ
1
,λ
2
是f(x,y)在椭圆[*]上的最大值和最小值. 又方程组①和②有非零解,系数行列式为0,即 [*] 化简得 λ
2
一(Aa
2
+Cb
2
)λ+(AC—B
2
)a
2
b
2
=0, 所以λ
1
,λ
2
是上述方程(即题目所给方程)的根.
解析
转载请注明原文地址:https://kaotiyun.com/show/7xW4777K
0
考研数学三
相关试题推荐
已知矩阵A=有特征值λ=5,求a的值;并当a>0时.求正交矩阵Q,使Q-1AQ=A.
已知线性方程组有无穷多解,而A是3阶矩阵,且分别是A关于特征值1,-1,0的三个特征向量,求矩阵A.
设A为n阶可逆矩阵,λ是A的一个特征值,则伴随矩阵A*的一个特征值是
设由方程φ(bz-cy,cx-az,ay-bx)=0(*)确定隐函数z=z(x,y),其中φ对所有变量有连续偏导数,a,b,c为非零常数,且bφ1-aφ2≠0,求
设f(x)在(-∞,+∞)有一阶连续导数,且f(0)=0并存在f’’(0).若求F’(x),并证明F’(x)在(-∞,+∞)上连续.
设A=其中ai≠aj(i≠j,i,j=1,2,…,n),则线性方程组ATx=B的解是______.
随机向区域D:0<y<(a>0>内扔一点,该点落在半圆内任何区域的概率与该区域的面积成正比,则落点与原点的连线与x轴的夹角小于的概率为________.
设I=|xy|dxdy,其中D是以a为半径、以原点为圆心的圆,则I的值为().
证明:(Ⅰ)对任意正整数n,都有成立;(Ⅱ)设an=1+—lnn(n=1,2,…),证明{an}收敛。
设三阶矩阵A的特征值为一2,0,2,则下列结论不正确的是().
随机试题
呼吸衰竭最主要的临床表现是
引起发热的病因基多,临床上最为常见的疾病是()。
呼吸性酸中毒最先应解决的问题
4人进行百米赛跑,若二人成绩相同则排名一致,求有多少种不同的成绩排名?
斯大林时期的经济体制最本质的特点是()。
战略数据规划方法将产品、服务及资源的生命周期划分为四个有序的阶段,其/顷序应该是()。
•Lookatthechartsbelow.Theyshowcompanysales.•Whichchartdoeseachsentence(11-15)describe?•Foreachsentence,mar
Mostpeoplehaveseenbulliesinaction,makinglifemiserableforothers.Theirtargetsoftenescapetheintimidationrelativel
DoYouTakeExpiredMedications?Lotsofpeopledo.Here’swhatyouneedtoknow.Lastweek,DebiLoariewasstraighten
AremarkablethinghappenedinNewYorkrecently:thestatelegislature,ineffect,turneddownthechancetowin$700millioni
最新回复
(
0
)