首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α满足Aα3=α2+α3,证明α1,α2,α3线性无关.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α满足Aα3=α2+α3,证明α1,α2,α3线性无关.
admin
2016-10-20
52
问题
设A为3阶矩阵,α
1
,α
2
为A的分别属于特征值-1,1的特征向量,向量α满足Aα
3
=α
2
+α
3
,证明α
1
,α
2
,α
3
线性无关.
选项
答案
(1)(用定义) 据已知条件有Aα
1
=-α
1
,Aα
2
=α
2
,Aα
3
=α
2
+α
3
.设 k
1
α
1
+k
2
α
2
+k
3
α
3
=0, ① 用A左乘①式的两端,并代人已知条件,有 -k
1
α
1
+k
2
α
2
+k
3
(α
2
+α
3
)=0. ② ①-②得 2k
1
α
1
-k
2
α
2
=0. 由于α
1
,α
2
是矩阵A不同特征值的特征向量,所以α
1
,α
2
线性无关,从而k
1
=0,k
3
=0. 将其代入①式得k
2
α
2
=0.因为α
2
是特征向量,必有α
2
≠0,从而k
2
=0. 因此,α
1
,α
2
,α
3
线性无关. (2)(用反证法) 设α
1
,α
2
,α
3
线性相关,由于α
1
,α
2
是矩阵A不同特征值的特征向量,所以 α
1
,α
2
必线性无关.从而α
3
可以由α
1
,α
2
线性表出.不妨设 α
3
=k
1
α
1
+k
2
α
2
, ① 用A左乘①式两端,并把Aα
3
=α
2
+α
3
,Aα
1
=-α
1
,Aα
2
=α
2
代入,得 α
2
+α
23
=-k
1
α
1
+k
2
α
2
. ② ①-②得 -α
2
=2k
1
α
1
. 由此得出α
1
,α
2
线性相关,与题设矛盾,故α
1
,α
2
,α
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/OeT4777K
0
考研数学三
相关试题推荐
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
两个无穷小之商是否必为无穷小?试举例说明可能出现的各种情况.
证明下列曲线积分在整个xOy平面内与路径无关,并计算积分值:
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
验证下列P(x,y)dx+Q(x,y)dy在整个xOy平面内是某一函数u(x,y)的全微分,并求一个这样的u(x,y):(1)(x+2y)dx+(2x+y)dy;(2)(6xy+2y2)dx+(3x2+4xy)dy;(3)(3x2y+xex)dx+(
求一曲线的方程,这曲线过原点,并且它在点(x,y)处的切线斜率等于2x+y。
计算下列各题:
设必为θ2的().
随机试题
IT行业有一条法则恰如其分地表达了“计算机功能、性能提高”的发展趋势。这就是美国Intel公司的创始人摩尔提出的“摩尔法则”。()
A.身黄B.目黄C.小便黄D.大便黄E.舌苔黄
根据饮用水卫生标准规定,饮用水用氯消毒时
关于估价目的相关事项说法正确的有()。
水塔处地面标高为15m,水塔柜底距地面20.5m,现拟在距水塔5km处建一幢住宅楼,该地地面标高为12m,若水塔至新建住宅楼管线的水力坡降为0.15%,则按管网最小服务水头确定的新建住宅楼建筑层数应为()层。
我国商业银行之间的竞争日趋激烈,普遍面临着收益下降、产品/服务成本增加、创新不足的发展困局。为有效提升中长期竞争能力和优势,各商业银行应重视并强化()的管理。
产品目标客户信息的内容主要包括()。
下列各税种中,采用比例税率和定额税率两种税率形式的有()。
Psychologiststakecontrastiveviewsofhowexternalrewards,from(31)praisetocoldcash,affectmotivationandcreativity.
Afterseveral______attemptstosendthemissileintospace,thespacecraftwasfinallylaunchedsuccessfully.
最新回复
(
0
)