首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)在(-1,1)内具有二阶连续导数,且f"(x)≠0,试证: 对(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf′(θ(x)x)成立;
设y=f(x)在(-1,1)内具有二阶连续导数,且f"(x)≠0,试证: 对(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf′(θ(x)x)成立;
admin
2019-12-26
87
问题
设y=f(x)在(-1,1)内具有二阶连续导数,且f"(x)≠0,试证:
对(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf′(θ(x)x)成立;
选项
答案
对(-1,1)内任一x≠0,由拉格朗日中值定理知,[*]θ(x)∈(0,1),使 f(x)=f(0)+xf′[θ(x)x]. 因为f"(x)在(-1,1)内连续且f"(x)≠0,所以f"(x)在(-1,1)内不变号,即f′(x)单调,故θ(x)是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/8GD4777K
0
考研数学三
相关试题推荐
①设α1,α2,…,αs和β1,β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt).②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).
设α1,α2,α3都是n维非零向量,证明:α1,α2,α3线性无关对任何数s,t,α1+sα3,α2+tα3都线性无关.
设A为n阶矩阵,α1为AX=0的一个非零解,向量组α2,α2,…,αs满足Ai-1αi=α1(i=2,3,…,s).证明α1,α2,…,αs线性无关.
设A为n阶矩阵,α0≠0,满足Aα0=0,向量组α1,α2满足Aα1=α0,A2α2=α0.证明α0,α1,α2线性无关.
设函数,证明:存在常数A,B,使得当x→0+时,恒有f(x)=e+Ax+Bx2+0(x2),并求常数A,B.
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设B≠O为三阶矩阵,且矩阵B的每个列向量为方程组的解,则k=______,|B|=______.
已知线性方程组有无穷多解,而A是3阶矩阵,且分别是A关于特征值1,-1,0的三个特征向量,求矩阵A.
设{an}单调减少,an=0,Sn=ak(n=1,2,…)无界,则幂级数an(x-1)n的收敛域为_______.
级数的收敛域是________.
随机试题
水痘开始出皮疹是在发热后
以下是湖北地区生产的名茶有
吗啡镇痛是由于
滴制法制备软胶囊的丸粒大小取决于
法官下列行为中应该受到纪律处分的是:()
如图4-79所示水平杆AB=l,质量为2m,剪断绳BC瞬间,A处约束力为()。
东风公司购入旧设备一台,实际支付价款8000元,支付运杂费500元,安装费1000元,出售单位的该设备账面原值为10000元,已提折旧3500元。则该设备入账的原值为()。
有关增值税纳税人的下列表述中,不正确的是()。
什么是数学课堂教学过程的优化?怎样做到数学课堂教学的优化?
发展低碳经济作为具有全球共识性的选择,将改变每一个企业、单位、家庭、个人的生产、工作、消费和生活的方式。然而,我国的低碳经济发展之路与发达国家有显著的不同。发达国家早已走过了工业化阶段,正在朝着全面信息化的方向前进。而我国是一个发展中国家,人口众多、经济发
最新回复
(
0
)