首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2002年)设函数f(x)在x=0某邻域内有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(h)+bf(2h)一f(0)在h→0时是比h高阶的无穷小,试确定a、b的值.
(2002年)设函数f(x)在x=0某邻域内有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(h)+bf(2h)一f(0)在h→0时是比h高阶的无穷小,试确定a、b的值.
admin
2018-06-30
57
问题
(2002年)设函数f(x)在x=0某邻域内有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(h)+bf(2h)一f(0)在h→0时是比h高阶的无穷小,试确定a、b的值.
选项
答案
解1 由题设条件知 [*] 由于f(0)≠0,则a+b一1=0 由洛必达法则知 [*] 又f(0)≠0,则a+2b=0,于是a=2,b=一1. 解2 由题设可知 f(h)=f(0)+f’(0)h+o(h) f(2h)=f(0)+2f’(0)h+o(h) 所以,af(h)+by(2h)一f(0)=(a+b一1)f(0)+(a+2b)f’(0)h+o(h) 因此,当a+b-1=0,且a+2b=0时 af(h)+bf(2h)一f(0)=o(h) 故 a=2,b=一1 △解3 由于[*] 由题设可知上式右端极限应为零,又f(0)≠0,则a+b一1=0,从而 [*] 而f’(0)≠0,则a+2b=0 由a+b一1=0及a+2b=0可知,a=2,b=一1
解析
转载请注明原文地址:https://kaotiyun.com/show/8Rg4777K
0
考研数学一
相关试题推荐
微分方程的特解是________
设φ(y)为连续函数.如果在围绕原点的任意一条逐段光滑的正向简单封闭曲线l上,曲线积分其值与具体l无关,为同一常数k.证明:在任意一个不含原点在其内的单连通区域D0上,曲线积分与具体的C无关而仅与点A,B有关.
设函数Q(x,y)在xOy平面上具有一阶连续偏导数,曲线积分∫L2xydx+Q(x,y)dy与路径无关,并且对任意t恒有求Q(x,y).
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设则F’(t)=______.
(2015年)
(2014年)下列曲线中有渐近线的是
(1994年)计算曲面积分其中S是由曲面x2+y2=R2及两平面z=R.z=一R(R>0)所围成立体表面的外侧.
(2015年)设函数f(x)在定义域I上的导数大于零.若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式.
[2002年]微分方程yy’’+y’2=0满足初始条件y|x=0=1,y’|x=0=1/2的特解是______.
随机试题
下列哪个算法是选择最早装入内存的页作为被替换的页()
下列哪项不符合.TIA的临床表现
关于主要诊断的取舍,下列错误的是
既能清心镇惊,又能安神解毒的药物是()。
某施工单位承接一项大型工业安装工程。工程范围:主厂房由五连跨组成,安装包含各专业。施工单位及时组建了项目部。项目部在进行工程质量检验评定划分时,将3台大型机械设备安装工程划为一个单位工程;考虑电气工程的复杂性,将整个主厂房的电气工程划为一个单位工程;将
跳舞大妈经常在你所在社区的广场上跳广场舞,周围居民与跳舞大妈出现冲突,你是负责调解处理本次纠纷的工作人员,你怎么做?
历史学家们认为:“17世纪后期科学革命的胜利为启蒙运动提供了先决条件。”据此判断,启蒙运动在科学思想方面最重要的先驱者是:
【府院之争】南京师范大学2011年中国近现代史复试真题;湖南师范大学2015年中国史综合真题;南开大学2015年中国历史真题;南开大学2016年中国历史真题;华中师范大学2017年中国史基础真题
夸美纽斯创立的教学原则体系述评。
[*]
最新回复
(
0
)