首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分的定义; (Ⅱ)证明下述可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则f’x(x0,y0)与f’y(x0,y0)都存在,且=f’x(x0,y0)△x+f’y(x0,
(Ⅰ)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分的定义; (Ⅱ)证明下述可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则f’x(x0,y0)与f’y(x0,y0)都存在,且=f’x(x0,y0)△x+f’y(x0,
admin
2022-04-10
143
问题
(Ⅰ)叙述二元函数z=f(x,y)在点(x
0
,y
0
)处可微及微分
的定义;
(Ⅱ)证明下述可微的必要条件定理:设z=f(x,y)在点(x
0
,y
0
)处可微,则f’
x
(x
0
,y
0
)与f’
y
(x
0
,y
0
)都存在,且
=f’
x
(x
0
,y
0
)△x+f’
y
(x
0
,y
0
)△y;
(Ⅲ)举例说明(Ⅱ)的逆定理不成立.
选项
答案
(Ⅰ)定义:设z=f(x,y)在点(x
0
,y
0
)的某邻域U内有定义,(x
0
+△x,y
0
+△y)∈U.增量 △z=f(x
0
+△x,y
0
+△y)—f(x
0
,y
0
)[*]A△x+B△y+o(ρ), (*) 其中A,B与△x和△y都无关,ρ=[*]=0,则称f(x,y)在点(x
0
,y
0
)处可微,并称 [*] 为z=f(x,y)在点(x
0
,y
0
)处的微分. (Ⅱ)设z=f(x,y)在点(x
0
,y
0
)处可微,则(*)式成立.令△y=0,于是 [*] (Ⅲ)当f’
x
(x
0
,y
0
)与f’
y
(x
0
,y
0
)存在时,z=f(x,y)在点(x
0
,y
0
)处未必可微.反例: [*] f’
y
(0,0)=0. 两个偏导数存在.以下用反证法证出f(x,y)在点(0,0)处不可微.若可微,则有 △f=f(△x,△y)一f(0,0)=0△x+0△y+o(ρ), [*] 极限值随k而异,(**)式不成立,所以不可微.
解析
转载请注明原文地址:https://kaotiyun.com/show/8hR4777K
0
考研数学三
相关试题推荐
求.
设为两个正项级数.证明:
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求A的特征值和特征向量.
已知方程组有解,证明:方程组无解.
设,求A的特征值,并证明A不可以对角化.
设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)f’(0)≠0,当h→0时,若af(h)+bf(2h)一f(0)=o(h),试求a,b的值。
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,β3=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求A的特征值和特征向量.
设有k台仪器,已知用第i台仪器测量时,测定值总体的标准差为σi,i=1,2,…,k,用这些仪器独立地对某一物理量θ各观察一次,分别得到X1,X2,…,Xn,设仪器都没有系统误差,即E(Xi)=θ,i=1,2,…,k,试求:a1,a2,…,ak应取何值?
讨论反常积分∫02的敛散性,若收敛计算其值.
随机试题
女性,18岁,体检发现心脏杂音来诊。平时不能耐受较大的体力活动,无双下肢水肿及夜间呼吸困难史,易感冒。查体:血压:130/80mmHg,心率90次/分。S1↓,S2稍↑。A:SM3/6反流样向左腋下传导,L4、5可闻收缩期Click音,下蹲位站立后Cli
红细胞上无H抗原称为
下列方法中,对Rh血型系统较为敏感的是
制备肠溶胶囊时,使用甲醛处理的目的是
下列关于价值工程的含义描述不正确的是( )。
科学管理的标志之一是()。
在下列账目中,出纳人员可以登记的是()。
王某现年17岁,高二学生,平时创新能力极强,其研究创造的一个小发明获得专利,并且经济价值较高。专利权的申请、使用和由此所获取的收入的处理一概由王某的父亲予以安排,王某的父亲从事的下列各种行为中,违背了监护责任的是()。
A、 B、 C、 D、 AA项可由左侧图形折成;B项,直线应与阴影相接,错误;C项,左侧面中三角形应含阴影,错误;D项,右侧面中阴影三角形应在上部,错误。
2017年4月1日,中共中央、国务院决定在此设立的国家级新区。设立雄安新区()
最新回复
(
0
)