首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系, β1=t1α1+t2α2,β2=t1α2+t2α3,…,β3=t1αs+t2α1, 其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系, β1=t1α1+t2α2,β2=t1α2+t2α3,…,β3=t1αs+t2α1, 其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
admin
2019-08-06
67
问题
设α
1
,α
2
,…,α
s
为线性方程组Ax=0的一个基础解系,
β
1
=t
1
α
1
+t
2
α
2
,β
2
=t
1
α
2
+t
2
α
3
,…,β
3
=t
1
α
s
+t
2
α
1
,
其中t
1
,t
2
为实常数。试问t
1
,t
2
满足什么条件时,β
1
,β
2
,…,β
s
也为Ax=0的一个基础解系。
选项
答案
因为β
i
(i=1,2,…,s)是α
1
,α
2
,…,α
s
的线性组合,且α
1
,α
2
,…,α
i
是Ax=0的解,所以根据齐次线性方程组解的性质知β
i
(i=1,2,…,s)均为Ax=0的解。 从α
1
,α
2
,…,α
s
是Ax=0的基础解系知s=n—r(A)。 以下分析β
1
,β
2
,…,β
s
线性无关的条件: 设k
1
β
1
+k
2
β
2
+…+k
s
β
s
=0,即 (t
1
k
1
+t
2
k
s
)α
1
+(t
2
k
1
+t
1
k
2
)α
2
+(t
2
k
2
+t
1
k
3
)α
3
+…+(t
2
k
s-1
+t
1
k
s
)α
s
=0, 由于α
1
,α
2
,…,α
s
线性无关,所以 [*] 又因系数矩阵的行列式 [*]=t
1
s
+(一1)
s+1
t
2
s
, 当t
t
s
+(一1)
s+1
t
2
s
≠0时,方程组只有零解k
1
=k
2
=…=k
s
=0。因此当s为偶数且t
1
≠±t
2
,或 当s为奇数且t
1
≠一t
2
时,β
1
,β
2
,…,β
s
线性无关,为Ax=0的一个基础解系。
解析
转载请注明原文地址:https://kaotiyun.com/show/twJ4777K
0
考研数学三
相关试题推荐
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设三阶矩阵A的特征值为λ1=-1,其对应的特征向量为α1,α2,α3,令P=(2α3,-3α1,-α2),则P-1(A-1+2E)P=______.
设A,B是满足AB=O的任意两个非零阵,则必有().
设f(x)在[0,1]上连续且单调减少,且f(x)>0.证明:
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设函数f(x)可导且(k>0),对任意的xn,作xn+1=f(xn)(n=0,1,2,…),证明:存在且满足方程f(x)=x.
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得
设随机变量X,Y相互独立,且又设向量组α1,α2,α3线性无关,求α+α2,α2+Xα3,Yα1线性相关的概率.
设f(x)二阶连续可导,且则().
随机试题
患者,女,34岁。诊断哮喘5年。长期应用倍氯米松(必可酮)气雾剂治疗,250μg/d,症状控制满意。近来受凉后再次出现喘憋,活动耐力无明显受限,夜间偶有发作。发作时吸入沙丁胺醇症状可缓解。患者治疗后出现口腔黏膜白色斑点,不正确的治疗措施是
前列腺癌最常见的组织学类型是
肛瘘
患者,女,14岁。左面部肿大,畸形,随年龄而增长。检查:左鼻及唇颊增大、下坠,软,面部及躯干皮肤有多处棕色斑。最可能的临床诊断是
A.风湿性心脏病B.心律失常C.二尖瓣狭窄伴关闭不全D.心功能Ⅲ级E.贫血于病因诊断的是()
某教学楼由10层和2层两部分组成,均拟设埋深相同的1层地下室。地基土为均匀的细粒土,场地在勘察深度内未见地下水。以下基础方案中的()不能有效减少高低层的不均匀沉降。
法律意义上的物是指_________的生产资料和消费资料。()
以下属于自物权的是( )。
下面不属于需求分析阶段任务的是
Manyoftheemployeesthinktheircareerpathbeginsduringtheiremploymentorwhentheygetajob.Butbasically,ifwelooka
最新回复
(
0
)