首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶方阵A≠0,满足Am=0(其中m为某正整数). (1)求A的特征值. (2)证明:A不相似于对角矩阵. (3)证明:|E+A|=1. (4)若方阵B满足AB=BA,证明:|A+B|=|B|.
设n阶方阵A≠0,满足Am=0(其中m为某正整数). (1)求A的特征值. (2)证明:A不相似于对角矩阵. (3)证明:|E+A|=1. (4)若方阵B满足AB=BA,证明:|A+B|=|B|.
admin
2017-07-26
38
问题
设n阶方阵A≠0,满足A
m
=0(其中m为某正整数).
(1)求A的特征值.
(2)证明:A不相似于对角矩阵.
(3)证明:|E+A|=1.
(4)若方阵B满足AB=BA,证明:|A+B|=|B|.
选项
答案
(1)设λ为A的任一特征值,x为对应的特征向量,则Ax=λx,两端左乘A,得A
2
x=λAx=λ
2
x,两端再左乘A,得A
3
x=λ
2
Ax=λ
3
x,如此做下去,可得A
m
x=λ
m
x.因为A
m
=0,得λ
m
x=0,又x≠0,故有λ=0,所以幂零矩阵A的特征值全为零. (2)A的特征向量为方程组(0.E一A)x=0的非零解,因为A≠0,有r(一A)≥1,故方程组Ax=0的基础解系所含向量的个数,即A的线性无关特征向量的个数为n一r(一A)≤n一1<n,所以n阶方阵A不相似于对角矩阵. (3)要证明|E+A|=1,由特征值的性质知,只要证明E+A的特征值全部为1即可.设λ为E+A的任一特征值,x为对应的特征向量,则有(E+A)x=λx,即Ax=(λ一1)x,故λ一1为A的特征值,(1)中已证A的特征值全为零,故有λ一1=0,得λ=1,由λ的任意性知E+A的特征值全为1,因此E+A的全部特征值的乘积等于1,即|E+A|=1. (4)当方阵B可逆时,欲证的等式为 |A+B|=|B|→B
—1
||A+B|=1→|B
—1
A+E|=1.利用(3),要证|B
—1
A+E|=1,只要证B
—1
A为幂零矩阵即可,等式AB=BA两端左乘B
—1
,得B
—1
AB=A,两端右乘B
—1
,得B
—1
A=AB
—1
,即A与B
—1
可交换,故由A
m
=0,得(B
—1
A)
m
=(B
—1
)
m
A
m
=0,所以,当方阵B可逆时结论成立. 当B不可逆时,即|B|=0时,欲证的等式成为|A+B|=0.因为|B|=0,故B有特征值0,即存在非零列向量ξ,使Bξ=0,故对任意正整数k,有B
k
ξ=0.注意A与B可交换,有 [*] 即齐次线性方程组(A+B)
m
x=0有非零解x=ξ,故该方程组的系数行列式为零,即 |(A+B)
m
|=|A+B|
m
=0, 故|A+B|=0,因此当B不可逆时结论也成立. 故得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/95H4777K
0
考研数学三
相关试题推荐
设向量β可由向量组α1,α2,...,αm线性表示,但不能由向量组(I):α1,α2,...,αm-1,线性表示,记向量组(Ⅱ):α1,α2,...,αm-1,β,则
求下列曲线在指定点处的切线与法平面方程:
[*]
[*]
设A,B为同阶可逆矩阵,则().
设A是n阶矩阵,且A的行列式|A|=0,则A________.
设A为3阶矩阵,α。,α为A的分别属于特征值-1,1的特征向量,向量α满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α11,α2,α3),求P-1AP.
设x轴正向到方向l的转角为ψ,求函数f(x,y)=x2-xy+y2在点(1,1)沿方向z的方向导数,并分别确定转角ψ,使得方向导数有(1)最大值,(2)最小值,(3)等于0.
求幂级数的收敛区域与和函数.
求幂级数(|x|<1)的和函数s(x)及其极值.
随机试题
I______notbecauseIlostmyjob,butbecausemyfatherwasterriblyill.
全口义齿初戴时,产生疼痛的原因不包括
隧道喷射混凝土抗压强度测定试验,其试件制作方法包括()等。
土地使用权出让,是指国家将土地使用权在一定年限内出让给土地使用者,由土地使用者向国家支付土地使用权出让金的行为。()
建设单位申请施工许可证时应当具备()条件。
甲乙两方案的预计投资报酬率均为20%,甲方案标准离差大于乙方案标准离差,则下列说法正确的是()。
设正项数列{an}单调减少,且发散,试问是否收敛?并说明理由.
数据库系统的三级模式结构从数据库系统管理角度考虑数据的组织与存储。下列不属于数据库三级模式结构的是()。
英文缩写CAI的中文意思是
Althoughtherearebodylanguagesthatcancrossculturalboundaries,cultureisstillasignificantfactorinallbodylanguage
最新回复
(
0
)