首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Ax=b恒有解的充分必要条件是r(A)=m.
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Ax=b恒有解的充分必要条件是r(A)=m.
admin
2016-04-11
59
问题
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Ax=b恒有解的充分必要条件是r(A)=m.
选项
答案
必要性:设ε
j
为E
m
的第j个列向量,由必要性假定,方程组Ax=ε
j
有解c
j
,即Ac
j
=ε
j
,(j=1,2,…,m),→A[c
1
c
2
… c
m
]=[ε
1
ε
2
…ε
m
]=E
m
,记C=[c
1
c
2
… c
m
],则有AC=E
m
,故m=r(E
m
)=r(AC)≤r(A)≤m,→r(A)=m;充分性:设r(A)=m,即A的行向量组线性无关,故[*]的行向量组线性无关,从而有[*]=m,由有解判定定理,知方程组Ax=b有解(其中[*]=[A | b]).
解析
转载请注明原文地址:https://kaotiyun.com/show/9Nw4777K
0
考研数学一
相关试题推荐
设有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆阵P,使得P-1AP为对角矩阵。
设连续非负函数f(x)满足f(x)f(-x)=1,则=________.
设向量β=(b,1,1)T可由α1=(a,0,1)T,α2=(1,a-1,1)T,α3=(1,0,a)T线性表示,且表示方法不唯一,记A=(α1,α2,α3)。求a,b的值,并写出β由α1,α2,α3表示的线性表达式
A、2B、C、D、πC先作代换将反常积分化为定积分计算.如积分区间为对称区间,为简化计算,还应考察被积函数或其子函数的奇偶性.解
α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Ax=b的通解x=().
设矩阵A是秩为2的4阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2—α3=(2,0,—5,4)T,α2+2α3=(3,12,3,3)T,α3—2α1=(2,4,1,一2)T,则方程组Ax=b的通解x=___
设都是线性方程组AX=0的解向量,只要系数矩阵A为().
设函数f(u)可导,y=f(sinx)当自变量x在x=π/6处取得增量△x=,相应的函数增量△y,的线性主部为1,则f’(1/2)=().
设一盒子中有5个球,编号分别为1,2,3,4,5.如果每次等可能地从中任取一球,记录其编号后放回,求3次取球得到的最大编号X的概率分布.如果一次从袋中任取3个球,求这3个球中最大编号y的概率分布.
设X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则
随机试题
在UNIX系统中,块设备的延迟写有什么作用?系统是如何处理延迟写的?
下列哪项不符合足月新生儿的特点
对于阴蒂的叙述,哪项正确
关于氯胺酮,下列哪项不正确
医务人员在学风方面必须遵循的伦理原则是
关于被害人的承诺,说法正确的是:
某5m高轴心受压砖柱,e=0,上、下端均为不动铰支座,采用MU10和M5的混合砂浆砌筑,截面尺寸为490mm×490mm
我母亲经常在星期日打扫卫生,洗衣服。
某企业发奖金是根据利润提成的,利润低于或等于10万元时可提成l0%;低于或等于20万元时,高于10万元的部分按7.5%提成;高于20万元的部分按5%提成。当利润为40万元时,应发放奖金()万元。
在中国古代典籍中,宪法一词的含义是指()。
最新回复
(
0
)