首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶连续可导,且f"(x)≠0,又f(x+h)=f(x)+f’(x+θh)h(0<θ<1).证明:
设f(x)二阶连续可导,且f"(x)≠0,又f(x+h)=f(x)+f’(x+θh)h(0<θ<1).证明:
admin
2019-11-25
59
问题
设f(x)二阶连续可导,且f"(x)≠0,又f(x+h)=f(x)+f’(x+θh)h(0<θ<1).证明:
选项
答案
由勒公式得 f(x+h)=f(x)+f’(x)h+[*]h
2
,其中ξ介于x与x+h之间. 由已知条件得 f’(x+θh)h=f’(x)h+[*]h
2
,或f’(x+θh)-f’(x)=[*]h, 两边同除以h,得[*], 而[*]·θ=f”(x)[*]θ, [*],两边取极限得f”(x)[*],而f”(x)≠0,故[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/AED4777K
0
考研数学三
相关试题推荐
将函数f(x)=arctan展开成x一2的幂级数,并求出此展开式成立的开区间.
设X关于Y的条件概率密度为且Y的概率密度为
假设一批产品的不合格品数与合格品数之比为R(未知常数).现在按还原抽样方式随意抽取的n件中发现k件不合格品.试求R的最大似然估计值.
证明:方程xα=lnx(α<0)在(0,+∞)上有且仅有一个实根.
曲线y=x2与直线y=x+2所围成的平面图形的面积为________.
设f(x),g(x)在[a,b]上二阶可导,且f(a)=f(b)=g(a)=0.证明:存在ξ∈(a,b),使f"(ξ)g(ξ)+2f’(ξ)g’(ξ)+f(ξ)g"(ξ)=0.
直线y=x将椭圆x2+3y2=6y分为两块,设小块面积为A,大块面积为B,求的值.
设函数y(x)在(-∞,+∞)内有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。(Ⅰ)试将x=x(y)所满足的方程变换成y=y(x)所满足的微分方程;(Ⅱ)求解变换后的微分方程的通解。
过曲线y=x2(x≥0)上某点处作切线,使该曲线、切线与x轴所围成的面积为,求切点坐标、切线方程,并求此图形绕x轴旋转一周所成立体的体积.
设函数f(x)连续,且∫0xtf(2x-t)dt=arctanx2.已知f(1)=1,求∫12f(x)dx的值.
随机试题
下列哪项不是慢性盆腔炎的常见证型
甲亢病人浸润性突眼下列描述中哪项不妥
土地法律制度的核心内容是()。
横道图法是分析建设工程项目施工成本偏差的常用方法,其特点包括()。
红霞公司为增值税一般纳税人,适用增值税税率为17%,该公司2014年8月初的资产总额为1560000元,负债总额为936000元。8月份发生的交易或事项如下:(1)采购生产用原材料一批,取得的增值税专用发票注明买价为203295元,增值税为
现在所说的“导游”概念,下面表述正确的是()。
尽管近年来我国引进不少人才,但真正顶尖的领军人才还是凤毛麟角。就全球而言,人才特别是高层次人才紧缺已呈常态化、长期化趋势。某专家由此认为,未来10年,美国、加拿大、德国等主要发达国家对高层次人才的争夺将进一步加剧,而发展中国家的高层次人才紧缺状况更甚于发达
Manyyoungpeoplegotouniversitywithoutclearideaofwhattheyaregoingtodoafterwards.Ifastudentgoestoauniversity
10GbpsEthernet采用的标准是IEEE()。
Hecamebacklate,______whichtimealltheguestshadalreadyleft.
最新回复
(
0
)