首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 已知函数f(x,y)满足=2(y+1),且f(y,y)=(y+1)2一(2一y)lny,求曲线f(x,y)=0所围图形绕直线y=一1旋转所成旋转体的体积.
[2014年] 已知函数f(x,y)满足=2(y+1),且f(y,y)=(y+1)2一(2一y)lny,求曲线f(x,y)=0所围图形绕直线y=一1旋转所成旋转体的体积.
admin
2019-04-05
68
问题
[2014年] 已知函数f(x,y)满足
=2(y+1),且f(y,y)=(y+1)
2
一(2一y)lny,求曲线f(x,y)=0所围图形绕直线y=一1旋转所成旋转体的体积.
选项
答案
按平面图形绕平行于坐标轴y=一1的直线旋转所得的体积公式(1.3.5.8): V=π∫
1
2
[y一(一1)]dx求之,为此需先求出(y+1)
2
的表达式. 在[*]=2(y+1)两边对y积分得到f(x,y)=y
2
+2y+c(x).又由题设有 f(y,y)=(y+1)
2
-(2一y)lny,因而(y+1)
2
一(2一y)lny=y
2
+2y+c(y). 则C(y)=1一(2一y)[ny,于是C(x)=1一(2一x)lnx,因而 f(x,y)=y
2
+2y+1一(2-x)lnx=(y+1)
2
一(2-x)lnx. 曲线f(x,y)=0即(y+1)
2
=(2一x)lnx,注意到(y+1)
2
≥0,有x∈[1,2].于是所求的旋转体体积为 V=∫
1
2
π(y+1)
2
dx=π∫
1
2
(2一x)lnxdx=π∫
1
2
2lnxdx一[*]∫
1
2
lnxdx
2
=2π(xlnx∣
1
2
·∫
1
2
x·[*]dx)—[*](x
2
lnx∣
1
2
—∫
1
2
x
2
·[*]dx) =2π(2ln2—1)一[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/AWV4777K
0
考研数学二
相关试题推荐
证明:方程xa=Inx(a<0)在(0,+∞)内有且仅有一个根.
设曲线y=xn在点(1,1)处的切线交x轴于点(ξn,0),求
设f(x,y)在点O(0,0)的某邻域U内连续,且.试讨论f(0,0)是否为f(x,y)的极值?是极大值还是极小值?
已知某企业的总收益函数为R(Q)=26Q一2Q2一4Q3,总成本函数为C(Q)=8Q+Q2,其中Q表示产品的产量.求边际收益函数、边际成本函数以及利润最大时的产量.
计算下列反常积分:(1)∫-∞+∞(|x|+x)e-|x|dx;
设函数f(x)连续,且∫0xtf(2x一t)dt=已知f(1)=1,求∫12f(x)dx的值.
(2003年试题,十)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.f’(x)>0.若极限存在,证明:(1)在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ使(3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2
[2011年]设函数y=y(x)由参数方程确定.求y=y(x)的极值和曲线y=y(x)的凹凸区间及拐点.
[2003年]有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(见图1.3.5.10),容器的底面圆的半径为2m.根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设
(2009年)设y=y(χ)在区间(-π,π)内过点()的光滑曲线.当-π<χ<0时,曲线上任一点处的法线都过原点;当0≤χ<π时,函数y(χ)满足y〞+y+χ=0.求函数y(χ)的表达式.
随机试题
公务员离职学习超过一年的,立受到的人事处理是
在质量改进工作的诊断过程中,可以运用一些系统的方法提出推测,其中效果较好的方法是()
战略
A.极化B.去极化C.复极化D.超级化电位产生过程中,若只有K+外流则引起
男性,40岁,反复出现胸骨后烧灼样疼痛,多在餐后1小时出现,卧位时症状加重。其最可能的诊断是
损伤性血胸病人胸腔内积血不凝同的原因是
某施工项目业主在招标文件中规定承包商拖期违约赔偿按5000元/天计算,投标单位在投标文件中提出拖期违约赔偿按4000元/天计算。经过开标、评标、定标后,业主发出了中标通知书,双方在签订合同时日拖期违约赔偿应为()元/天。
在国民收入核算体系中,计入GDP的政府支出是指()。
小林私拿水果摊上的一只苹果,经同学揭发,被老师叫到了办公室。老师问道:“小林,你私拿别人的东西,这已经是第几次了?”小林低着头回答:“第五次了”。“你为什么不改呢?”“我……我也晓得不对,就是……就是有时忍不住。”这时,教师应从()入手对小
根据我国选举法规定,人民代表大会的选举经费来源于()。(2011法单11)
最新回复
(
0
)