首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是2n+1阶正交矩阵,即AAT=ATA=E,证明:|E-A2|=0.
已知A是2n+1阶正交矩阵,即AAT=ATA=E,证明:|E-A2|=0.
admin
2016-10-20
55
问题
已知A是2n+1阶正交矩阵,即AA
T
=A
T
A=E,证明:|E-A
2
|=0.
选项
答案
由行列式乘法公式(1.10),得|A|
2
=|A|.|A
T
|=|AA
T
|=|E|=1. (Ⅰ)如|A|=1,那么 |E-A|=|AA
T
-A|=|A(A
T
-E
T
)|=|A|.|A-E|=|-(E-A)| =(-1)
2n+1
|E-A|=-|E-A|, 从而|E-A|=0. (Ⅱ)如|A|=-1,那么可由 |E+A|=|AA
T
+A|=|A(A
T
+E
T
)|=|A|.|A+E|=-|E+A|, 得到|E+A|=0.又因|E-A
2
|=|(E-A)(E+A)|=|E-A|.|E+A|, 所以不论|A|是+1或-1,总有|E-A
2
|=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/BZT4777K
0
考研数学三
相关试题推荐
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).如果最多一位顾客购买滚筒洗衣机的概率为0.087,那么至少两位顾客购买滚筒洗衣机的概率是多大?
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
掷两枚均匀的骰子,已知它们出现的点数各不相同,求其中有一个点数为4的概率.
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t),求:(1)t为何值时,向量组α1,α2,α3线性相关;(2)t为何值时,向量组α1,α2,α3线性无关;(3)当线性相关时,将α3表为α1和α2的线性组合.
设α1=(2,-1,0,5),α2=(-4,-2,3,0),α3=(-1,0,1,k),α4=(-1,0,2,1),则k=________时,α1,α2,α3,α4线性相关.
若α1,α2,…,αs的秩为r,则下列结论正确的是().
验证函数u=e-kn2tsinnx满足热传导方程ut=kuxx.
试求常数a和b的值,使得
随机试题
甲被某市政府评为道德模范,本地媒体对甲的事迹进行了宣传。乙在微博平台发文对甲的故事进行质疑,认为对甲的部分报道并不真实,该微博被大量转载。一时间,甲承受众多质疑,精神倍感痛苦,遂向人民法院起诉请求精神损害赔偿。经法院审理查明,媒体在报道的时候的确进行了过度
甲型肝炎的潜伏期为()
核衰变后质量数不变,原子序数减少1的衰变是
招标采购项目常用的风险应对方法包括()。
关于短期借款的账务处理中,正确的有()。
某彩电生产企业为增值税一般纳税人。2015年相关生产、经营资料如下:(1)企业坐落在某市区,全年实际占用土地面积共计140000平方米,其中:企业办的职工子弟学校占地10000平方米、幼儿园占地4000平方米、非独立核算的门市部占地6000平方米、职
如果你被录用为一名公安干警,遇到什么情况你会提出辞职或者请求调离?
不是所有的规章制度都具有强制性。()
设f(x)在[0,1]上可导,f’(x)>0,求φ(x)=∫01f(x)一f(t)|dt的极值点.
Theworldeconomyhasrunintoabrickwall.Despitecountlesswarningsinrecentyearsabouttheneedtoaddressapotentialhu
最新回复
(
0
)