首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(Ⅰ)为 又已知某齐次线性方程组(Ⅱ)的通解为 k1[0,1,1,0]T+k2[一1,2,2,1]T. (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共
设四元齐次线性方程组(Ⅰ)为 又已知某齐次线性方程组(Ⅱ)的通解为 k1[0,1,1,0]T+k2[一1,2,2,1]T. (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共
admin
2018-09-25
76
问题
设四元齐次线性方程组(Ⅰ)为
又已知某齐次线性方程组(Ⅱ)的通解为
k
1
[0,1,1,0]
T
+k
2
[一1,2,2,1]
T
.
(1)求线性方程组(Ⅰ)的基础解系;
(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
选项
答案
(1)线性方程组(Ⅰ)的解为 [*] 得所求基础解系 ξ
1
=[0,0,1,0]
T
,ξ
2
=[-1,1,0,1]
T
. (2)将方程组(Ⅱ)的通解代入方程组(Ⅰ),得 [*] =>k
1
=-k
2
.方程组(Ⅰ)和(Ⅱ)有 非零公共解,且为 x=-k
2
[0,1,1,0]
T
+k
2
[-1,2,2,1]
T
=k
2
[-1,1,1,1]
T
=k[-1,1,1,1]
T
,其中k为任意非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Beg4777K
0
考研数学一
相关试题推荐
求I=xdV,,Ω由三个坐标面及平面x+y+2z=2围成.
设A是n阶矩阵,若A2=A,证明A+E可逆.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
若A是对称矩阵,B是反对称矩阵,则AB是反对称矩阵的充要条件是AB=BA.
设f(x)在[-2,2]上有连续的导数,且f(0)=0,F(x)=f(x+t)dt,证明级数绝对收敛.
将函数f(x)=sin(x+a)展开成x的幂级数,并求收敛域.
设α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,-2)T,若β1=(1,3,4)T可以由α1,α2,α3线性表出,β2=(0,1,2)T不能由α1,α2,α3线性表出,则a=__________.
设X1,X2,…,X10是来自正态总体X~N(0,22)的简单随机样本,求常数a,b,c,d,使Q=a+b(X2+X3)2+c(X4+X5+X6)2+d(X7+X8+X9+X10)2服从χ2分布,并求自由度m.
证明D==(x1+x2+x3)(xi-xj).
求线性方程组的通解,并求满足条件的所有解.
随机试题
不适用于口腔单纯性疱疹治疗的药物是
A.防病治病,救死扶伤,实行医学人道主义,全心全意为人民健康服务B.全心全意为人民健康服务C.救死扶伤,忠于职守;钻研医术,精益求精;一视同仁,平等对待;语言文明,平等待人;廉洁奉公,遵纪守法;互尊互学,团结协作D.一视同仁,平等待人E.不伤害,有
下列关于固体分散体的叙述正确的是
法的渊源主要有()
每月预算收支执行情况文字说明材料,于每月终了后()日内报送财政部。
A注册会计师负责审计甲公司2010年度财务报表。在编制和归整审计工作底稿时,A注册会计师遇到下列事项,请代为作出正确的专业判断。在编制审计工作底稿时,下列各项中,A注册会计师通常认为不必形成最终审计T作底稿的是()。
有系统地收集有关学生学习行为的资料,参照预定的教学目标对其进行价值判断的过程,叫做()。
当西方企业还在产品质量的竞争中拼搏,日本企业却已开始改变竞争方式,将重点转移到顾客服务方面来。继质量之后,服务变成了企业下一个全力以赴的目标。以下哪项不是上面文中之意?()
A、 B、 C、 D、 D
AproverballegedlyfromancientChinawaswidelyspreadintheWest"Ifyouwanttobehappyforafewhours,gotogetdrunk;
最新回复
(
0
)