首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(Ⅰ)为 又已知某齐次线性方程组(Ⅱ)的通解为 k1[0,1,1,0]T+k2[一1,2,2,1]T. (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共
设四元齐次线性方程组(Ⅰ)为 又已知某齐次线性方程组(Ⅱ)的通解为 k1[0,1,1,0]T+k2[一1,2,2,1]T. (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共
admin
2018-09-25
39
问题
设四元齐次线性方程组(Ⅰ)为
又已知某齐次线性方程组(Ⅱ)的通解为
k
1
[0,1,1,0]
T
+k
2
[一1,2,2,1]
T
.
(1)求线性方程组(Ⅰ)的基础解系;
(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
选项
答案
(1)线性方程组(Ⅰ)的解为 [*] 得所求基础解系 ξ
1
=[0,0,1,0]
T
,ξ
2
=[-1,1,0,1]
T
. (2)将方程组(Ⅱ)的通解代入方程组(Ⅰ),得 [*] =>k
1
=-k
2
.方程组(Ⅰ)和(Ⅱ)有 非零公共解,且为 x=-k
2
[0,1,1,0]
T
+k
2
[-1,2,2,1]
T
=k
2
[-1,1,1,1]
T
=k[-1,1,1,1]
T
,其中k为任意非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Beg4777K
0
考研数学一
相关试题推荐
设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B—C=
设A,B,C是n阶矩阵,且ABC=E,则必有
设A,P均为3阶矩阵,PT为P的转置矩阵,且PTAP=.若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则QTAQ=
设f(x)在[-2,2]上有连续的导数,且f(0)=0,F(x)=f(x+t)dt,证明级数绝对收敛.
设n维列向量α1,α2,…,αn-1,β线性无关,且与非零向量β1,β2都正交.证明β1,β2线性相关,α1,α2,…,αn-1,β1线性无关.
已知α1,α2,α3线性无关,证明2α1+3α2,α2一α3,α1+α2+α3线性无关.
已知线性方程组的通解是(2,1,0,3)T+k(1,一1,2,0)T,如令αi=(ai,bi,ci,di)T,i=1,2,…,5.试问:(Ⅰ)α1能否由α2,α3,α4线性表出?(Ⅱ)α4能否由α1,α2,α3线性表出?并说明理由.
设n(n≥3)阶矩阵A=,如伴随矩阵A*的秩r(A*)=1,则a为
设f(x)分别满足如下两个条件中的任何一个:(Ⅰ)f(x)在x=0处三阶可导,且=1;(Ⅱ)f(x)在x=0邻域二阶可导,f′(0)=0,且-1)f″(x)-xf′(x)=ex-1,则下列说法正确的是
已知线性方程组有无穷多解,而A是3阶矩阵,且分别是A关于特征值1,-1,0的三个特征向量,求矩阵A.
随机试题
缔约国就发展贸易关系中某项具体问题所达成的书面协议,是为补充解释修改而签订,该协议为()
()是由若干判断得出一个判断的思维形式。
患者女性,34岁,X线检查示右肺大面积实变,右肺查体不可能出现的体征是
皮肤紫纹是由于大量皮质醇促进蛋白质分解,抑制蛋白质合成,使机体处于负氮平衡状态所致。
下列各项咨询业务中,不属于注册咨询工程师(投资)执业范围的是()。
在下列关于对财务信息执行商定程序的说法中,正确的是( )。注册会计师执行的商定程序业务与执行鉴证业务存在很多方面的不同,其中包括( )。
A注册会计师计划测试X公司2014年销售交易是否真实。下列实质性程序获取的审计证据中,与证明销售交易的真实性最相关的是()。
关于“节约”正确的说法有()。
Entrepreneursareeverybody’sdarlingsthesedays.Theymaybesmall,buttheyareinnovative.Andinnovation,weareassured,i
A、Mr.Smithhassignedthecontract.B、Mr.SmithisunavailabletillThursday.C、Themanshouldhavecalledbeforethevisit.D、
最新回复
(
0
)