首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在,证明: 存在ξ∈(1,2),使得.
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在,证明: 存在ξ∈(1,2),使得.
admin
2018-05-23
50
问题
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又
存在,证明:
存在ξ∈(1,2),使得
.
选项
答案
令h(x)=lnx,F(x)=∫
1
x
f(t)dt,且F
’
(x)=f(x)≠0,由柯西中值定理,存在ξ∈(1,2),使得[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/Bng4777K
0
考研数学一
相关试题推荐
设实对称矩阵A满足A2一3A+2E=O,证明:A为正定矩阵.
设λ1、λ2分别为n阶实对称矩阵A的最小和最大特征值,X1、X2分别为对应于λ1和λn的特征向量,记f(X)=,X∈R2,X≠0证明:λ1≤f(X)≤λn,minf(X)=λ1=f(X1),maxf(X)=λn=f(Xn).
设有两个线性方程组:其中向量b=(b1,b2,…,bm)T≠0.证明I方程组(I)有解的充分必要条件,是(Ⅱ)的每一解y=(y1,y2,…,ym)T都满足方程b1y1+b2y2+…+bkym=0.
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Ax=b恒有解的充分必要条件是r(A)=m.
设,l元非齐次线性方程组Ax=b有解η*,r(A)=r<n,证明:方程组Ax=b有n一r+1个线性无关的解,而且这n—r+1个解可以线性表示方程组Ax=b的任一解.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.(1)证明B可逆;(2)求AB—1.
随机试题
痿证的病因是
A.中性B.远中C.近中D.正中E.前伸正中时上颌第一磨牙近中颊尖咬在下颌下颌第一磨牙颊沟的近中为
最常见的中耳乳突炎是
上颌第一磨牙近中颊尖离开颌平面下前牙切缘高于颌平面
结构在规定的时间内、规定的条件下,完成预定功能的能力,称为结构的( )。
制定课程目标的依据主要有()。
下列有关学习的说法,不正确的是()。
6个人出差,安排住宿时2个人一间房,对应1号、2号、3号3个房间,其中,甲和乙要住同一间。则一共()种安排方式。
(88年)已知矩阵(1)求x与y;(2)求一个满足P-1AP=B的可逆矩阵P.
Writeanessayof160-200wordsbasedonthedrawing.Inyouressay,youshould1)describethedrawingbriefly,2)explainit
最新回复
(
0
)