首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且 2f(0)=∫02f(x)dx=f(2)+f(3). (1)证明存在η∈(0,2),使f(η)=f(0); (2)证明存在ξ∈(0,3),使f”(ξ)=0.
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且 2f(0)=∫02f(x)dx=f(2)+f(3). (1)证明存在η∈(0,2),使f(η)=f(0); (2)证明存在ξ∈(0,3),使f”(ξ)=0.
admin
2016-06-27
107
问题
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且
2f(0)=∫
0
2
f(x)dx=f(2)+f(3).
(1)证明存在η∈(0,2),使f(η)=f(0);
(2)证明存在ξ∈(0,3),使f”(ξ)=0.
选项
答案
(1)已知2f(0)=∫
0
2
f(x)dx,又根据f(x)在[0,2]上是连续的,且由积分中值定理得,至少有一点η∈(0,2),使得∫
0
2
f(x)dx=f(η).(2一0). 因此可得2f(0)=2f(η),即存在η∈(0,2),使得f(η)=f(0). (2)因f(2)+f(3)=2f(0),即[*].又因为f(x)在[2,3]上连续,由介值定理 知,至少存在一点η
1
∈[2,3]使得f(η
1
)=f(0). 因f(0)在[0,η]上连续,在(0,η)上可导,且f(0)=f(η),由罗尔中值定理知,存在ξ
1
∈(0,η),有f’(ξ
1
)η=0. 又因为f(x)在[η,η
1
]上是连续的,在(η,η
1
)上是可导的,且满足f(η)=f(0)=f(η
1
),由罗尔中值定理知,存在ξ
2
∈(η,η
1
),有f’(ξ
2
)=0. 又因为f(x)在[ξ
1
,ξ
2
]上是二阶可导的,f’(ξ
1
)=f’(ξ
2
)=0,根据罗尔中值定理,至少存在—点ξ∈(ξ
1
,ξ
2
),使得f”(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/CFT4777K
0
考研数学三
相关试题推荐
孙中山在回顾辛亥革命的历程并总结有关教训时说过:“曾几何时,已为情势所迫,不得已而与反革命的专制阶级谋妥协。此种安协,实间接与帝国主义相调和。遂为革命第一次失败之根源。”孙中山所说的“失败之根源”指的是()。
资本—帝国主义对中国侵略采取的手段主要是()。
垄断高价和垄断低价并不否定价值规律,因为()
在近代中国,实现国家富强和人民富裕的前提条件是()。
恩格斯指出:“19世纪三大空想社会主义者的学说虽然含有十分虚幻和空想的性质,但他们终究是属于一切时代最伟大的智士之列的,他们天才地预示了我们现在已经科学地证明了其正确性的无数真理”。空想社会主义与科学社会主义的根本区别在于()。
设f(x)在[a,b]上可积,又,证明φ(x)是[a,b]上的连续函数.
求下列参数方程所确定的函数的二阶导数d2y/dx2.设f〞(t)存在且不为零.
化下列方程为齐次型方程,并求出通解:(1)(2y-x-5)dx-(2x-y+4)dy=0;(2)(2x-5y+3)dx-(2x+4y-6)dy=0;(3)(x+y)dx+(3x+3y-4)dy=0;(4)(y-x+1)dx-(y+x+5)dy=0.
验证极限存在,但不能用洛必达法则得出.
设f(x)=x(x+1)(2x+1)(3x一1),则方程f’(x)=0在(一1,0)内实根的个数恰为
随机试题
第一掌骨基底部骨折由于相关肌肉的牵拉,骨折远端移位的方向是
《战国策》的整理编订者是
当眼球向外转时,外直肌接受神经冲动兴奋,而直接对抗肌一内直肌同时受到抑制,这遵循
A.二尖瓣脱垂B.二尖瓣狭窄C.主动脉瓣狭窄D.感染性心内膜炎E.主动脉瓣关闭不全患者。女性,45岁。胸骨左缘第3肋间闻及舒张期叹气样杂音。心尖部闻及舒张中晚期隆隆样杂音。应考虑的诊断是
麦冬具有而天冬不具有的功效是
关于劳动关系的表述,下列哪些选项是正确的?(2009年试卷一第70题)
设C=AB-1,则C-1的第2行第2列的元素为()。
下列人员不得担任上市公司独立董事的有()。
“峰三千”“水八百”、树木种属繁多是()的总特色。
2013年该城镇人均可支配收入为()。
最新回复
(
0
)