首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且 2f(0)=∫02f(x)dx=f(2)+f(3). (1)证明存在η∈(0,2),使f(η)=f(0); (2)证明存在ξ∈(0,3),使f”(ξ)=0.
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且 2f(0)=∫02f(x)dx=f(2)+f(3). (1)证明存在η∈(0,2),使f(η)=f(0); (2)证明存在ξ∈(0,3),使f”(ξ)=0.
admin
2016-06-27
57
问题
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且
2f(0)=∫
0
2
f(x)dx=f(2)+f(3).
(1)证明存在η∈(0,2),使f(η)=f(0);
(2)证明存在ξ∈(0,3),使f”(ξ)=0.
选项
答案
(1)已知2f(0)=∫
0
2
f(x)dx,又根据f(x)在[0,2]上是连续的,且由积分中值定理得,至少有一点η∈(0,2),使得∫
0
2
f(x)dx=f(η).(2一0). 因此可得2f(0)=2f(η),即存在η∈(0,2),使得f(η)=f(0). (2)因f(2)+f(3)=2f(0),即[*].又因为f(x)在[2,3]上连续,由介值定理 知,至少存在一点η
1
∈[2,3]使得f(η
1
)=f(0). 因f(0)在[0,η]上连续,在(0,η)上可导,且f(0)=f(η),由罗尔中值定理知,存在ξ
1
∈(0,η),有f’(ξ
1
)η=0. 又因为f(x)在[η,η
1
]上是连续的,在(η,η
1
)上是可导的,且满足f(η)=f(0)=f(η
1
),由罗尔中值定理知,存在ξ
2
∈(η,η
1
),有f’(ξ
2
)=0. 又因为f(x)在[ξ
1
,ξ
2
]上是二阶可导的,f’(ξ
1
)=f’(ξ
2
)=0,根据罗尔中值定理,至少存在—点ξ∈(ξ
1
,ξ
2
),使得f”(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/CFT4777K
0
考研数学三
相关试题推荐
老子曾以江海处下而为百谷王的事实,告诫人们不要“自矜”“自伐”“自是”。与此体现同样优良道德传统的是()。
资产阶级革命派和改良派论战的焦点是()。
劳动力成为商品()。
证明:抛物面z=x2+y2+1上任一点处的切平面与曲面z=x2+y2所围成的立体的体积为一定值.
求下列函数的n阶导数的一般表达式:(1)y=xn+a1xn-1+a2xn-2+…+an-1x+an(a1,a2,…,an都是常数);(2)y=sin2x;(3)y=x-1/x+1;(4)y=ln1+x/1-x.
设a。+a1/2+…+an/n+1=0.证明:多项式f(x)=a。+a1x+…+anxn在(0,1)内至少有一个零点.
求:微分方程y〞+y=-2x的通解.
差分方程yx+1-3yx=7.2x的通解为_______.
设f(x)和φ(x)在(-∞,+∞)内有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则().
设函数f(x,y)在点P(xo,yo)处连续,且f(xo,yo)>0(或f(xo,yo)<0),证明:在点P的某个邻域内,f(x,y)>0(或f(x,y)<0).
随机试题
不宜冷疗的情况是
下列可用于降血脂的药物是
民用建筑工程室内饰面采用的天然花岗石材、人造木板和饰面人造板应实行见证取样和送检。
政府投资决策以( )为目标,做出是否投资建设项目的决定。
主管代理记账业务的负责人必须具备的专业技术职务资格是()。
中期财务报表以中期为基础编制,其具体形式不包括()。
甲评估师执行某国有企业的评估项目(非重大和特殊项目),评估基准日2018年6月30日。在执行其他必要的评估程序之后,评估师完成了评估报告(评估报告日为2018年12月20日),并于2019年1月底完成工作底稿等评估档案的归档工作。在工作底稿归档的具体工
关于QDⅡ基金的投资范围,表述不准确的是()。[2015年9、12月真题]
经营杠杆
IhavebeenteachingforlongerthanIcaretosay,andalwaysofferacourseforenteringfreshmen.AndI’vediscoveredsomet
最新回复
(
0
)