首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足 Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3. ①求A的特征值. ②求A的特征向量. ③求A*一6E的秩.
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足 Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3. ①求A的特征值. ②求A的特征向量. ③求A*一6E的秩.
admin
2018-05-23
37
问题
已知A是3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量组,满足
Aα
1
=一α
1
一3α
2
—3α
3
,Aα
2
=4α
1
+4α
2
+α
3
,Aα
3
=一2α
1
+3α
3
.
①求A的特征值.
②求A的特征向量.
③求A*一6E的秩.
选项
答案
①记P=(α
1
,α
2
,α
3
),因为α
1
,α
2
,α
3
是线性无关,所以P是可逆矩阵. AP=(Aα
1
,Aα
2
,Aα
3
)=(一α
1
一3α
2
—3α
3
,4α
1
+4α
2
+α
3
,一2α
1
+3α
3
)=(α
1
,α
2
,α
3
)[*] 记B=[*]则AP=PB,即P
-1
AP=B,A与B相似,特征值一样. 求B的特征多项式 |λE—B|=[*]=(λ一1)(λ一2)(λ一3). 得A的特征值为1,2,3. ②先求B的特征向量,用P左乘之得到A的特征向量.(如果Bη=λη,则P
-1
APη=λη,即A(Pη)=λ(Pη).) 对于特征值1: [*] B的属于特征值1的特征向量(即(B—E)x=0的非零解)为c(1,1,1)
T
,c≠0.则A的属于特征值1的特征向量为c(α
1
+α
2
+α
3
)
T
,c≠0. 对于特征值2: [*] B的属于特征值2的特征向量(即(B一2E)x=0的非零解)为c(2,3,3)
T
,c≠0.则A的属于特征值2的特征向量为c(2α
1
+3α
2
+3α
3
)
T
,c≠0. 对于特征值3: [*] B的属于特征值3的特征向量(即(B一3E)x=0的非零解)为c(1,3,4)
T
,c≠0.则A的属于特征值3的特征向量为c(α
1
+3α
2
+4α
3
)
T
,c≠0. ③由A的特征值为1,2,3,|A|=6.于是A*的特征值为6,3,2,A*一6E的特征值为0,一3,一4. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/COX4777K
0
考研数学三
相关试题推荐
方程y(4)-2ˊˊˊ-3yˊˊ=e-3x-2e-x+x的特解形式(其中a,b,c,d为常数)是()
以y=cos2x+sin2x为一个特解的二阶常系数齐次线性微分方程是_________.
级数,当________时绝对收敛;当_________时条件收敛;当_________时发散.
设随机变量x与y相互独立,且都服从参数为1的指数分布,则随机变量Z=的概率密度为________.
设A是m×s矩阵,B是s×n矩阵,则齐次线性方程组BX=0和ABX=0是同解方程组的一个充分条件是()
已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解是()
设A为n阶正定矩阵.证明:存在唯一正定矩阵H,使得A=H2.
设A与B均为正交矩阵,并且|A|+|B|=0.证明:A+B不可逆.
设则
随机试题
A.尿频、尿急、尿痛B.血尿C.两者皆有D.两者皆无肾癌可引起
以下哪一项不是肝脓肿常见的声像特点
扁平脚常见于
关于《民事诉讼法》规定的期间制度,下列哪一选项是正确的?
锅炉的汽、水系统安装完毕后,必须进行( ),以确保锅炉安全进行。
玻璃面板在施工现场进行安装的时候,应该按照玻璃面板的一般规定进行,下列关于玻璃面板的安装,说法正确的是()
施工过程中耗费的构成工程实体或有助于工程实体形成的各项费用支出,称为()。
丙公司只生产L产品,计划投产一种新产品,现有M、N两个品种可供选择,相关资料如下:资料一:L产品单位售价为600元,单位变动成本为450元,预计年产销量为2万件。资料二:M产品的预计单价为1000元,边际贡献率为30%,年产销量为2.2万件,开发M产品
FoolJaneis______shecouldnothavedonesuchathing.
Idon’tthinkthisroomwillbebigenoughto______alltheguests.
最新回复
(
0
)