首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
对于n元方程组,下列命题正确的是
对于n元方程组,下列命题正确的是
admin
2019-01-14
61
问题
对于n元方程组,下列命题正确的是
选项
A、如果Ax=0只有零解,则Ax=b有唯一解.
B、如果Ax=0有非零解,则Ax=b有无穷多解.
C、如果Ax=b有两个不同的解,则Ax=0有无穷多解.
D、Ax=b有唯一解的充要条件是r(A)=n.
答案
C
解析
当r(A)=n时,不一定有r
=n.注意,n元方程组只表示A有n个列向量,并不反映列向量的维数(即方程的个数),此时可以有r
>n,那么方程组可能无解,所以(A),(B),(D)均不对.对于(C),从Ax=b有不同的解,知Ax=0有非零解,进而有无穷多解.
转载请注明原文地址:https://kaotiyun.com/show/CjM4777K
0
考研数学一
相关试题推荐
已知非齐次线性方程组当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(Ⅰ)、(Ⅱ)同解.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用上一题的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
已知有四个线性无关的特征向量,求A的特征值与特征向量,并求A2004.
A和B均是m×n矩阵,秩r(A)+r(B)=n,若BBT=E且B的行向量是齐次方程组AX=0的解,P是M阶可逆矩阵,证明:矩阵pb的行向量是Ax=0的基础解系.
求曲线在点M0(1,1,3)处的切线与法平面方程.
已知随机变量X,Y的概率分布分别为并且P{X+Y=1}=1,求:(I)(X,Y)的联合分布;(Ⅱ)X与Y是否独立?为什么?
设随机变量,Y~E(1),且X与Y相互独立.记Z=(2X一1)Y,(Y,Z)的分布函数为F(y,z).试求:(I)Z的概率密度fZ(z);(Ⅱ)F(2,一1)的值.
(I)设X与Y相互独立,且X~N(5,15),Y—χ2(5),求概率P{X一5>};(Ⅱ)设总体X~N(2.5,62),X1,X2,X3,X4,X5是来自X的简单随机样本,求概率P{(1.3<<3.5)∩(6.3<S2<9.6)}.
设质点P沿以为直径的下半圆周,从点A(1,2)运动到B(3,4)的过程中,受变力F的作用,F的大小等于点P到原点0之距离,方向垂直于线段,与y轴正向的夹角小于,求变力F对质点P做的功.
设A,B均是n阶矩阵,下列命题中正确的是
随机试题
生命之所以美丽,正在于它有血有肉的过程中,始终高扬着一个美丽的主题;美丽之所以_____,正在于生命的底蕴中,始终流动着人类对世界最_____的良知与渴望。填入画横线部分最恰当的一项是()。
0
硝普盐半定量实验只能作为()
案情:信用卡在现代社会的运用越来越广泛。设甲为信用卡的持卡人.乙为发出信用卡的银行,丙为接受银行信用卡消费的百货公司。甲可以凭信用卡到丙处持卡消费,但应于下个月的15日前将其消费的款项支付给乙;丙应当接受甲的持卡消费,并于每月的20日请求乙支付甲消费的款项
分年投资计划表是编制()的基础,实践中往往将两者合一。
发生人事争议后,当事人不愿协商或者协商不成的,应当向有关主管部门申请调解,不能直接向人事争议仲裁委员会申请仲裁。()
三次科技革命对人类社会的历史进程产生了极其深远的影响。三次科技革命发生的共同社会根源不包括()。
插入信息的敏感性差的密码系统是()。
独特工艺
在美国,每年六月的第三个星期日,庆祝父亲节的热情是很高的。在这一天,人们真心感谢父亲们在教育孩子和国家发展中做出的重大贡献,并向他们表达这份深深的喜爱。作为父亲节的习俗,美国人会向祖父、继父、养父、叔父以及其他如父亲般恩重如山的人致敬。设立一个特殊的日子来
最新回复
(
0
)