首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是( ).
[2005年] 设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是( ).
admin
2019-04-28
71
问题
[2005年] 设λ
1
,λ
2
是矩阵A的两个不同的特征值,对应的特征向量分别为α
1
,α
2
,则α
1
,A(α
1
+α
2
)线性无关的充分必要条件是( ).
选项
A、λ
1
≠0
B、λ
2
≠0
C、λ
1
=0
D、λ
2
=0
答案
B
解析
解一 首先注意α
1
,α
2
线性无关.在推导α
1
,A(α
1
+α
2
)线性无关的条件时要用到它.
设k
1
α
1
+k
2
A(α
1
+α
2
)=0,则k
1
α
1
+k
2
λ
1
α
1
+k
2
λ
2
α
2
=0,(k
1
+k
2
λ
1
)α
1
+k
2
λ
2
α
2
=0.因α
1
,α
2
线性无关,故k
1
+k
2
λ
1
=0,k
2
λ
2
=0.当λ
2
≠0时,有k
2
=0,从而k
1
=0.于是当λ
2
≠0时,α
1
,A(α
1
+α
2
)线性无关.
反之,若α
1
,A(α
1
+α
2
)=λ
1
α
1
+λ
2
α
2
线性无关,则必有λ
2
≠0.因为如果λ
2
=0,则α
1
与A(α
1
+α
2
)=λ
1
α
1
线性相关与题设矛盾.综上所述,仅(B)入选.
解二 因向量组α
1
,A(α
1
+α
2
)=λ
1
α
1
+λ
2
α
2
可看成线性无关向量α
1
,α
2
的线性组合,且
[α
1
,A(α
1
+α
2
)]=[α
1
,λ
1
α
1
+λ
2
α
2
]=[α
1
,α
2
]
由命题2.3.2.2知,向量组α
1
,A(α
1
+α
2
)线性无关的充分必要条件是
的秩等于2,而秩
故仅(B)入选.
(注:命题2.3.2.2 设向量组α
1
,α
2
,…,α
s
线性无关,β
1
,β
2
,…,β
s
为该向量组的线性组合:
即
其中A=[a
ij
]
s×t
称为线性表示的系数矩阵.或
则向量组β
1
,β
2
,…,β
t
线性无关
线性表示的系数矩阵A=[a
ij
]
s×t
或矩阵K=A
T
的秩为t.)
转载请注明原文地址:https://kaotiyun.com/show/CzJ4777K
0
考研数学三
相关试题推荐
设幂级数的收敛半径分别为R1,R2,且R1<R2,设(an+bn)x1的收敛半径为R0,则有().
求级数的收敛域与和函数.
求幂级数的收敛域,并求其和函数.
级数().
设f(x)=∫-1x(1一|t|)dt(x>-1),求曲线y=f(x)与x轴所围成的平面区域的面积.
袋中有a个白球与b个黑球。每次从袋中任取一个球,取出的球不再放回去,求第二次取出的球与第一次取出的球颜色相同的概率。
已知随机变量X服从参数为λ的指数分布,则P{X+Y=0}=________;P{Y≤}=________。
如果用X,Y分别表示将一枚硬币连掷8次正反面出现的次数,则t的一元二次方程t2+Xt+Y=0有重根的概率是________。
设函数f(x)在(-∞,+∞)内连续,其导数的图形如下页图,则f(x)有().
随机试题
国家无委会规定,D30组有11个频点。()
膀胱三角为
癫痫患者用药的首要原则是
关于小儿运动发育的一般规律,错误的是
与财政部门直接发生预算缴款、拨款关系的企业和事业各单位的预算职权不包括()。
某市区木业制造企业(增值税一般纳税人),主要以木材加工木制品,2014年9月发生以下业务:(1)自林场购进原木一批,农产品收购发票注明价款128万元;委托某运输公司(一般纳税人)负责运输,支付不含税运费8.9万元,取得运输业增值税专用发票;(2)将购进
下列语句中,缺少宾语的是()。
风:风速:风气
关于我国的农民工现象,下列说法错误的是()。
一个完整的计算机系统就是指______。
最新回复
(
0
)