设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.

admin2019-11-25  34

问题 设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.

选项

答案因为A有三个线性无关的特征向量,所以λ=2的线性无关的特征向量有两个,故 r(2E-A)=1, 而2E-A=[*],所以X=2,y=-2. 由|λE-A|=[*]=(λ-2)2(λ-6)=0得λ1=λ2=2,λ3=6. 由(2E-A)X=0得λ=2对应的线性无关的特征向量为a1=[*],a2=[*], 由(6E-A)X=0得λ=6对应的线性无关的特征向量为a3=[*], 令P=[*],则有P-1AP=[*]

解析
转载请注明原文地址:https://kaotiyun.com/show/DID4777K
0

最新回复(0)