首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组试问a为何值时,该方程组有非零解,并求出其通解.
设有齐次线性方程组试问a为何值时,该方程组有非零解,并求出其通解.
admin
2018-08-12
46
问题
设有齐次线性方程组
试问a为何值时,该方程组有非零解,并求出其通解.
选项
答案
对方程组的系数矩阵A施以初等行变换,得[*] ①当a=0时,r(A)=r(B)=1<n.故方程组有非零解,其同解方程组为x
1
+x
2
+…+x
n
=0,由此得基础解系为[*] 所以方程组的通解为x=k
1
ξ
1
+k
2
ξ
2
+…+k
n-1
ξ
n-1
(k
1
,k
2
,…,k
n-1
为任意常数). ②当a≠0时,对矩阵B继续施以初等行变换[*]故当[*]时,r(A)=n一1<n.方程组也有非零解,其同解方程组为[*] 得基础解系为ξ=(1,2,…,n)
T
.此时方程组的通解为x=kξ(k为任意常数).
解析
本题考查齐次线性方程组有非零解的判定条件和求解方法.由于未知数的个数与方程组中方程的个数相同,所以可由Ax=0有非零解
|A|=0或r(A)<n.由此可求得常数.然后再求齐次线性方程组通解.
转载请注明原文地址:https://kaotiyun.com/show/DQj4777K
0
考研数学二
相关试题推荐
证明不等式:xarctanx≥
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
设,问a,b,c为何值时,矩阵方程AX=B有解?有解时求出全部解.
已知四元二个方程的齐次线性方程组的通解为X=k1[1,0,2,3]T+k2[0,1,一1,1]T,求原方程组.
计算定积分
设有3阶实对称矩阵A满足A3-6A2+11A一6E=0,且|A|=6.判断二次型f=xT(A+E)x的正定性.
设实二次型f(x1,x2,x3)=xATx的秩为2,且α1=(1,0,0)T是(A一2E)x=0的解,α2=(0,一1,1)T是(A一6E)x=0的解.写出该二次型;
设X的概率密度为f(x)=,一∞<x<+∞,(1)求E(X)和D(X);(2)求X与|X|的协方差,判断X与|X|是否不相关;(3)判断X与|X|是否相互独立.
设当x→x0时,α(x),β(x)(β(x)≠0)都是无穷小,则当x→x0时,下列表达式中不一定为无穷小的是()
求解y"=e2y+ey,且y(0)=0,y’(0)=2.
随机试题
各国秘书为其领导工作服务,开展办文、办会、办事等日常工作业务的前提是
Theboat______,throwingtheboysintothewater.
陈旧性脱位是指:
A、T细胞表面B、B细胞表面C、NK细胞表面D、肥大细胞表面E、造血干细胞表面CD34分子表达在
先天禀赋不足是引起消渴病的重要内在因素,其中尤以阳虚体质最易罹患。()
特种设备的安装单位应具备的条件是()。
依据企业所得税相关规定,下列对所得来源地的确定,正确的有()。(2013年)
某个体零售户于2011年2月1日购入某品牌冰箱10台,含税进价为23.4万元。当月将其中6台销售给某三星级宾馆,货款金额为30万元(不含税)。则该个体零售户当月应缴纳的增值税为()万元。
一、注意事项一、本试卷由给定资料与作答要求两部分构成。考试时限为150分钟。其中,阅读给定资料参考时限为40分钟,作答参考时限为110分钟。满分100分。二、所有考生必须按要求作答,未按要求作答的,不得分。二、给定资料1.1996
一棵二叉树中共有70个叶子结点与80个度为1的结点,则该二叉树中的总结点数为
最新回复
(
0
)