首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上二阶可导,f(1)=1,且,证明:存在ξ∈(0,1),使得f"(ξ)-2f’(ξ)+2=0.
设f(x)在[0,1]上二阶可导,f(1)=1,且,证明:存在ξ∈(0,1),使得f"(ξ)-2f’(ξ)+2=0.
admin
2021-10-18
66
问题
设f(x)在[0,1]上二阶可导,f(1)=1,且
,证明:存在ξ∈(0,1),使得f"(ξ)-2f’(ξ)+2=0.
选项
答案
由[*]得f(0)=0,f’(0)=1,由拉格朗日中值定理,存在c∈(0,1),使得f’(c)=[f(1)-f(0)]/(1-0)=1,令φ(x)=e
-2x
[f’(x)-1],由f’(0)=f’(c)=1得φ(0)=φ(c)=0, 由罗尔定理,存在ξ∈(0,c)∈(0,1),使得φ’(ξ)=0,而φ’(x)=-2e
-2x
[f’(x)-1]+e
-2x
f"(x)=e
-2x
[f"(x)-2f’(x)+2],因为e
-2x
≠0,所以f"(ξ)-2f’(ξ)+2=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/EAy4777K
0
考研数学二
相关试题推荐
(Ⅰ)证明:利用变换可将方程.(Ⅱ)求方程的通解.
设函数f(x)连续,且满足,又因fˊ(0)存在,则f(x)=().
设A是三阶实对称矩阵,r(A)=1,A2-3A=O,设(1,1,-1)T为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.
求
(1)设y=y(χ,t),其中t是由G(χ,y,t)=0确定的χ,y的函数,且f(χ,t),G(χ,y,t)一阶连续可偏导,求.(2)设z=z(χ,y)由方程z+lnz-∫yχdt=1确定,求.
设f(χ)=,求f(χ)的间断点,并对其进行分类.
设直线y=kχ与曲线y=所围平面图形为D1,它们与直线χ=1围成平面图形为D2.(1)求忌,使得D1与D2分别绕χ轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;(2)求(1)中条件成立时的.
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
讨论f(χ,y)=在点(0,0)处的连续性、可偏导性及可微性.
求极限
随机试题
提托穴的定位是()。
患者,女性,39岁,近半年来,每于感染或劳累后出现劳力性呼吸困难,并逐渐加重,休息后也不易缓解,一周前受凉后出现呼吸困难,伴咳嗽,咳大量泡沫样痰,夜间不能平卧,以“慢性心功能不全,二尖瓣狭窄”收入院。患者既往曾有反复链球菌性咽炎史。该患者心脏瓣膜病最可
月经周期的长短取决于下列何项因素
具有抗尿崩症作用的药物是
基金收益扣除按照国家规定可以扣除的费用等项目后的余额称为()。
某市区酒厂为增值税一般纳税人,2019年10月发生如下经济业务:(1)向某商场销售自产粮食白酒15吨,每吨不含税单价为80000元,收取包装物押金174000元,收取品牌使用费18100元。(2)从云南某酒厂购进粮食白酒6吨,专用发票上注明每吨不含税进
【2014广西】研究性学习既是一门课程,又是一种学习方式。()
LSAT
Inadditiontourgetoconformwhichwegenerateourselves,thereistheexternalpressureofthevariousformalandinformalgr
Itisnotpolitetoarriveatadinnerpartymorethan15to20minuteslate.Thehostorhostessusuallywaitsforallthegues
最新回复
(
0
)