首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),g(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶线性非齐次方程 y"+p(x)y’+q(x)y=f(x) ① 的3个解,且 ≠常数, 则式①的通解为____________.
设p(x),g(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶线性非齐次方程 y"+p(x)y’+q(x)y=f(x) ① 的3个解,且 ≠常数, 则式①的通解为____________.
admin
2020-03-10
54
问题
设p(x),g(x)与f(x)均为连续函数,f(x)≠0.设y
1
(x),y
2
(x)与y
3
(x)是二阶线性非齐次方程
y"+p(x)y’+q(x)y=f(x) ①
的3个解,且
≠常数,
则式①的通解为____________.
选项
答案
y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
)+y
1
,其中C
1
,C
2
为任意常数
解析
由线性非齐次方程的两个解,可构造出对应的齐次方程的解,再证明这样所得到的解线性无关便可.
y
1
一y
2
与y
2
一y
3
均是式①对应的线性齐次方程
y"+p(x)y’+q(x)y=0 ②
的两个解.今证它们线性无关.事实上,若它们线性相关,则存在两个不全为零的常数k
1
与k
2
使
l
1
(y
1
一y
2
)+k
2
(y
2
一y
3
)=0. ③
设k
1
≠0,又由题设知y
2
一y
3
≠0,于是式③可改写为
=常数,
矛盾.若k
1
=0,由y
2
一y
3
≠0,故由式③推知k
2
=0矛盾.这些矛盾证得y
1
一y
2
与y
2
一y
3
线性无关.
于是
Y=C
1
(y
1
一y
2
)+C
2
(y
1
一y
3
) ④
为式②的通解,其中C
1
,C
2
为任意常数,从而知
y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
)+y
1
⑤
为式①的通解.
转载请注明原文地址:https://kaotiyun.com/show/EeA4777K
0
考研数学二
相关试题推荐
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3=
设试证向量组α1,α2……αn与向量组β1β2……βn等价.
(Ⅰ)设f(x),g(x)连续,且,求证:无穷小∫0φ(x)f(t)dt~∫0φ(x)g(t)dt(x→a);(Ⅱ)求w={∫0x3ln(1+2sint)dt/[f0xln(1+2sint)dt]3}.
(Ⅰ)设f(x)在[x0,x0+δ)((x0-δ,x0])连续,在(x0,x0+δ)((x0-δ,x0))可导,又,求证:f’+(x0)=A(f’-(x0)=A).(Ⅱ)设f(x)在(x0-δ,x0+δ)连续,在(x0-δ,x0+δ)/{x0}可导,又f
将n阶可逆方阵A的第i行与第j行对换后的矩阵记作B,(1)证明:B可逆;(2)求AB一1.
设函数y=f(x)由参数方程所确定,其中ψ(t)具有二阶导数,且,ψ’(1)=6,求函数ψ(t).
设A是n阶反对称矩阵。证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵。
计算(a>0),其中D是由曲线y=-a+和直线y=-χ所围成的区域.
设则
设矩阵A=(aij)3×3,满足A*=AT,其中A*是A的伴随矩阵,AT是A的转置矩阵,若a11,a12,a13是3个相等的正数,则a13=_________.
随机试题
Thetwopartieshaven’treachedanyagreement,butdecidedtosetanotherdatefor______talks.
______whenthephonerang.
______isknowntotheworld,MarkTwainisagreatAmericanwriter.
如下哪项是糖尿病目前死亡的主要原因
张某因盗窃被判处有期徒刑5年,在交付执行前,突患严重疾病,需保外就医。有权决定张某暂予监外执行的是哪一个机关?
甲、乙听说丙家里富裕,密谋绑架丙索要一笔钱,于某晚潜入丙下榻的宾馆,将其绑走并拘禁于甲的家里,天亮后才发现绑架的是丁,翻遍丁身上只得300元钱,恼羞成怒,殴打丁致死。下列哪项是正确的?()
当重复保险发生保险事故,按照各保险人在无他保的情况下独立应负的赔款责任比例来分摊损失的方法,称作( )。
下列属于市场风险的有()。
微软公司开发的下列操作系统中,属于嵌入式操作系统的是()。
有以下函数过程:FunctionGys(ByValxAsInteger,ByValyAsInteger)AsIntegerDoWhiley<>0Reminder=
最新回复
(
0
)