首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),g(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶线性非齐次方程 y"+p(x)y’+q(x)y=f(x) ① 的3个解,且 ≠常数, 则式①的通解为____________.
设p(x),g(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶线性非齐次方程 y"+p(x)y’+q(x)y=f(x) ① 的3个解,且 ≠常数, 则式①的通解为____________.
admin
2020-03-10
37
问题
设p(x),g(x)与f(x)均为连续函数,f(x)≠0.设y
1
(x),y
2
(x)与y
3
(x)是二阶线性非齐次方程
y"+p(x)y’+q(x)y=f(x) ①
的3个解,且
≠常数,
则式①的通解为____________.
选项
答案
y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
)+y
1
,其中C
1
,C
2
为任意常数
解析
由线性非齐次方程的两个解,可构造出对应的齐次方程的解,再证明这样所得到的解线性无关便可.
y
1
一y
2
与y
2
一y
3
均是式①对应的线性齐次方程
y"+p(x)y’+q(x)y=0 ②
的两个解.今证它们线性无关.事实上,若它们线性相关,则存在两个不全为零的常数k
1
与k
2
使
l
1
(y
1
一y
2
)+k
2
(y
2
一y
3
)=0. ③
设k
1
≠0,又由题设知y
2
一y
3
≠0,于是式③可改写为
=常数,
矛盾.若k
1
=0,由y
2
一y
3
≠0,故由式③推知k
2
=0矛盾.这些矛盾证得y
1
一y
2
与y
2
一y
3
线性无关.
于是
Y=C
1
(y
1
一y
2
)+C
2
(y
1
一y
3
) ④
为式②的通解,其中C
1
,C
2
为任意常数,从而知
y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
)+y
1
⑤
为式①的通解.
转载请注明原文地址:https://kaotiyun.com/show/EeA4777K
0
考研数学二
相关试题推荐
用配方法化二次型f(x1,x2,x3)=x12+x2x3为标准二次型.
设f(x)在[a,+∞)上连续,f(a)<0,而f(x)存在且大于零.证明:f(x)在(a,+∞)内至少有一个零点.
设A=(α1,α2,α3,α4)是3×4矩阵,r(a)=3.证c1=|α2,α3,α4|,c2=-|α1,α3,α4|,c3=|α1,α2,α4|,c4=-|α1,α2,α3|.η=(c1,c2,c3,c4)T.证明η构成AX=0的基础解系.
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,
曲线y=χ2(χ≥0)上某点处作切线,使该曲线、切线与χ轴所围成的面积为,求切点坐标、切线方程,并求此图形绕χ轴旋转一周所成立体的体积.
若a1=a3=a≠0,a2=a4=-a,求ATX=b的通解.
(1997年试题,三,(6))已知且A2一AB=I,其中,是三阶单位矩阵,求矩阵B.
设多项式f(x)=,则x4的系数和常数项分别为()
求下列方程的通解或特解:
随机试题
甲状腺功能亢进症术前准备通常不包括
对某种特定商品有兴趣的消费者的集合是()。
尾矿库使用到最终设计高程前()年,应进行闭库设计,当需要扩建或新建尾矿库接续生产时,应根据建设周期提前制定扩建或新建尾矿库的规划设计工作,确保新老库使用的衔接。
在工程经济分析中,以投资收益率指标作为主要决策依据,其可靠性较差的原因在于()。
简述以学生为中心的教学策略的类型。
在教育过程中,强调“设身处地”地去理解学生,这是重视下列哪种心理效应?()
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
《老收心》、《李逵负荆》的作者是()。
Whatistheweatherperfectfor?
______(你没有理由不事先告诉他们)thatyouaregoing.
最新回复
(
0
)