首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=2α1+α2-α3,Aα2=α1+2α2+α3, Aα3=-α1+α2+2α3. 求秩r(3E-A);
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=2α1+α2-α3,Aα2=α1+2α2+α3, Aα3=-α1+α2+2α3. 求秩r(3E-A);
admin
2017-06-14
32
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
=2α
1
+α
2
-α
3
,Aα
2
=α
1
+2α
2
+α
3
, Aα
3
=-α
1
+α
2
+2α
3
.
求秩r(3E-A);
选项
答案
因为P
1
-1
(3E—A)P
1
= [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Epu4777K
0
考研数学一
相关试题推荐
当k=________时,向量β=(1,k,5)能由向量α1=(1,-3,2),α2=(2,-1,1)线性表示.
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.A2;
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX=0必有()
(2003年试题,三)过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D(见图1一3—5).求D的面积A;
(2007年试题,24)设总体X的概率密度为X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值.判断是否为θ2的无偏估计量,并说明理由.
(1998年试题,八)设正项数列{an}单调减少,且发散,试问级数是否收敛?并说明理由.
随机试题
_______属于实验性观察。
女性患者,44岁。2周前患中耳炎,今晨起发热达40℃,意识不清,抽搐大发作2次。查体:昏迷,颈强直,Kernig征阳性,四肢可动,无病理征。头MRI未见明确病灶。以下哪项腰穿检查结果更符合本病
患者,女性,54岁,主述反复上腹疼痛,空腹时疼痛明显,进餐后可缓解,夜间上腹痛明显,排黑粪3天,急诊入院。分诊护士认为患者的出血量最少为
有机磷农药中毒的典型表现应除外
理事会是会员制证券交易所的最高权力机构。( )
推动教育学发展的内在动力是()的发展。
信息化是构建信息与信息的快速传播方式,其本质是一种信息的传递。数据化描述则是将现实世界的某些特点进行数据整理收集或对某些世界的功能进行模拟.并以信息化的状态表述出来。根据上述定义,下列属于数据化描述的是:
史量才
中断是指CPU对系统中或系统外发生的异步事件的响应,中断源是指()。
•ReadthearticlebelowaboutmanufacturingintheUSA.•Choosethebestsentencefromtheoppositepagetofilleachofthegap
最新回复
(
0
)